

Вся геометрия

9 класса в кратком изложении

(к учебнику Л.С. Атанасяна и др.)

Вся геометрия

Tlamamra

9 класса в кратком изложении

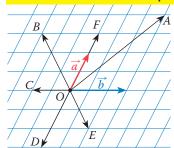
(к учебнику Л.С. Атанасяна и др.)

СОДЕРЖАНИЕ

Разпожение вектора по прум
газложение вектора по двум
Разложение вектора по двум неколлинеарным векторам \overrightarrow{a} и \overrightarrow{b} 1
Декартовы координаты на плоскости 1
Device
Действия над векторами
Нахождение координат вектора \overrightarrow{AB}
пахождение координат вектора АБ
Расстояние между двумя точками
Уравнение окружности
Координаты середины отрезка
$\sin \alpha$, $\cos \alpha$, $tg \alpha$, где $0^{\circ} \le \alpha \le 180^{\circ}$
Table 200 200 200 200 200 200 200 200 200 20
Теорема синусов и косинусов

Скалярное произведение векторов 4
Скалярное произведение векторов, заданных в координатах
Уравнение прямой в общем виде $ax + by = c$, где a,b,c – числа4
Многоугольники. Длина окружности. Площадь круга5
Формулы для правильного многоугольника 5
Движение
Многогранники7
Тела вращения

Разложение вектора по двум неколлинеарным векторам \overrightarrow{a} и \overrightarrow{b}



$$\overrightarrow{OA} = 2\overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{OB} = 1.5\overrightarrow{a} - \overrightarrow{b}$$

$$\overrightarrow{OC} = 0 \cdot \overrightarrow{a} - \frac{2}{3} \overrightarrow{b}$$

$$\overrightarrow{OF} = 1.5\overrightarrow{a} - 0 \cdot \overrightarrow{b}$$

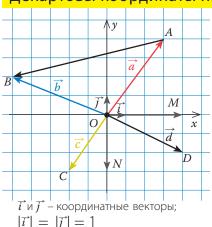
$$\overrightarrow{OE} = -\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$$

$$\overrightarrow{OB} = 1.5\overrightarrow{a} - \overrightarrow{b}$$
 \overrightarrow{p} – любой вектор;

$$\overrightarrow{OC} = 0 \cdot \overrightarrow{a} - \frac{2}{3} \overrightarrow{b}$$
 $\overrightarrow{p} = x \overrightarrow{a} + y \overrightarrow{b}$, где x и y — числа;

$$\overrightarrow{p}$$
 разлагается единственным способом.

Декартовы координаты на плоскости



Координаты вектора

$$\overrightarrow{a} \{3;4\}$$

$$\overrightarrow{b} \{-5;2\}$$

$$\overrightarrow{ON} \{0;-3\}$$

$$\frac{ON(0;-3)}{\overrightarrow{d}(4;-2)}$$

$$\overrightarrow{OM}(4;0)$$

$$\overrightarrow{AB}$$
{-8;-2}
 \overrightarrow{CD} {6;1}

Разложение вектора

$$\vec{a} = 3\vec{i} + 4\vec{j}$$

$$\vec{b} = -5\vec{i} + 2\vec{j}$$

$$|\vec{a}| = \sqrt{3^2 + 1}$$

$$|\vec{b}| = \sqrt{(-5)^2 - 1}$$

$$|\vec{o}N| = -3\vec{j}$$

$$|\vec{d}| = 4\vec{i} - 2\vec{j}$$

$$|\vec{o}M| = 4\vec{i}$$

Длина вектора

$$|\overrightarrow{a}| = \sqrt{3^2 + 4^2} = 5$$

$$|\overrightarrow{b}| = \sqrt{(-5)^2 + 2^2} = \sqrt{29}$$

$$|\overrightarrow{ON}| = 3$$

$$|\overrightarrow{d}| = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$|\overrightarrow{OM}| = 4$$

$$|\overrightarrow{AB}| = \sqrt{68}$$

$$|\overrightarrow{CD}| = \sqrt{37}$$

$$\overrightarrow{a}$$
{x;y}; $|\overrightarrow{a}| = \sqrt{x^2 + y^2}$

Действия над векторами

$$\overrightarrow{a}$$
{ x_1 ; y_1 } = $x_1\overrightarrow{i}$ + $y_1\overrightarrow{j}$

$$\overrightarrow{b}$$
 { x_2 ; y_2 } = $x_2\overrightarrow{i}$ + $y_2\overrightarrow{j}$

1.
$$\overrightarrow{a} + \overrightarrow{b} = (x_1 + x_2)\overrightarrow{i} + (y_1 + y_2)\overrightarrow{j}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = (x_1 - x_2)\overrightarrow{i} + (y_1 - y_2)\overrightarrow{i}$$

3.
$$k\overrightarrow{a}$$
 { kx₁ ; ky₁ }, где k — число

Нахождение координат вектора \overrightarrow{AB}

Пусть O – начало координат,

$$B\{x_2; y_2\}, A\{x_1; y_1\}$$

Обозначим
$$\overrightarrow{OB} = \overrightarrow{b}$$
, $\overrightarrow{OA} = \overrightarrow{a}$

Тогда
$$\overrightarrow{AB} = (\overrightarrow{b} - \overrightarrow{a}) \{x_2 - x_1; y_2 - y_1\}$$

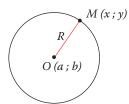
Расстояние между двумя точками

$$A \{ x_1; y_1 \}$$

$$B\{x_2; y_2\}$$

$$AB = |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Уравнение окружности



$$OM = R = \sqrt{(x-a)^2 + (y-b)^2}$$

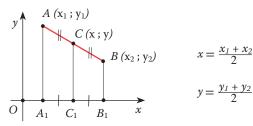
$$(x-a)^2 + (y-b)^2 = R^2$$

уравнение окружности с центром в точке (a;b) радиуса R

$$x^2 + y^2 = R^2$$

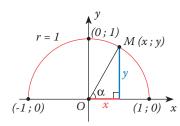
уравнение окружности с центром в начале координат (0;0) радиуса R

Координаты середины отрезка



по теореме Фалеса

Sin α , cos α , tq α , где $0^{\circ} \le \alpha \le 180^{\circ}$



1. α – острый угол, тогда $\sin \alpha = \frac{y}{1} = y$; $\cos \alpha = \frac{x}{1} = x$; $tg \alpha = \frac{\sin \alpha}{\cos \alpha}$

Получили формулы: $sin \alpha = y$

$$\cos \alpha = x$$

 $tg \alpha = \frac{\sin \alpha}{\cos \alpha}$

2. Определим значения $\sin \alpha$, $\cos \alpha$, $tg \alpha$ этими формулами для любого угла α , принадлежащего отрезку [0°; 180°]:

$$\sin 0^{\circ} = 0$$
$$\cos 0^{\circ} = 1$$
$$tg 0^{\circ} = 0$$

$$sin 90^{\circ} = 1$$

 $cos 90^{\circ} = 0$
 $tg 90^{\circ}$ He MMEET

$$sin 180^{\circ} = 0$$

$$cos 180^{\circ} = -1$$

$$tg 180^{\circ} = 0$$

$$sin (90^{\circ} - \alpha) = cos \alpha$$

$$cos (90^{\circ} - \alpha) = sin \alpha$$

$$sin (180^{\circ} - \alpha) = sin \alpha$$

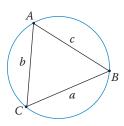
$$cos (180^{\circ} - \alpha) = -cos \alpha$$

4. Полуокружность является дугой окружности $x^2 + y^2 = 1 \implies$ любого угла α , принадлежащего отрезку [0°; 180°]

 $sin^2\alpha + cos^2\alpha = 1$ выполняется для

Эта формула называется основным тригонометрическим тождеством

Теорема синусов и косинусов



Теорема синусов:

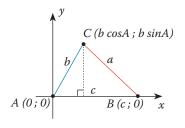
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

Для доказательства использовать формулы:

$$S_{\triangle} = \frac{1}{2} ab \, sin C = \frac{1}{2} ac \, sin B = ..., \,$$
а также задачу № 1033

Теорема косинусов:

$$a^2 = b^2 + c^2 - 2bc \cos A$$



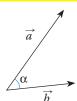
Доказательство

Запишем квадрат расстояния между точками В и С, координаты которых известны:

$$CB^{2} = (b \cos A - c)^{2} + (b \sin A)^{2} = b^{2} \cos^{2} A - 2bc \cos A + c^{2} + b^{2} \sin^{2} A =$$

$$= b^{2} \underbrace{(\cos^{2} A + \sin^{2} A)}_{=1} + c^{2} - 2bc \cos A, \quad u.m.\partial.$$

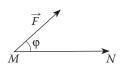
Скалярное произведение векторов



Определение: $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \alpha$

- 1. $\overrightarrow{a} \perp \overrightarrow{b}$, to $\overrightarrow{a} \cdot \overrightarrow{b} = 0$
- 2. $\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}| \cdot |\overrightarrow{a}| = |\overrightarrow{a}|^2$ Скалярный квадрат вектора \overrightarrow{a}

Скалярное произведение векторов широко применяется в физике



 $M\dot{N}$ – перемешение A – работа $A = |\overrightarrow{F}| \cdot |MN| \cdot \cos \Phi$

Скалярное произведение векторов, заданных в координатах

 \overrightarrow{a} { x_1 ; y_1 } ; \overrightarrow{b} { x_2 ; y_2 } Доказать: $\overrightarrow{a} \cdot \overrightarrow{b} = x_1x_2 + y_1y_2$

Доказательство

1. По теореме косинусов

$$AB^2 = OB^2 + OA^2 - 2OB \cdot OA\cos\alpha$$

2.
$$|\overrightarrow{AB}|^2 = |\overrightarrow{b}|^2 + |\overrightarrow{a}|^2 - 2 \overrightarrow{b} \overrightarrow{a}$$

3. \overrightarrow{AB} { $x_2 - x_1$; $y_2 - y_1$ }; $|\overrightarrow{AB}|^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$

$$|\overrightarrow{b}|^2 = x_2^2 + y_2^2$$
; $|\overrightarrow{a}|^2 = x_1^2 + y_1^2$

4.
$$\overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2} (x_2^2 + y_2^2 + x_1^2 + y_1^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2) = x_1 x_2 + y_1 y_2$$
 u.m.d.

Следствие 1

$$\overrightarrow{a} \perp \overrightarrow{b} \iff x_1 x_2 + y_1 y_2 = 0$$

Следствие 2

 $\cos \alpha = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}}$ 1. $\overrightarrow{a}^2 \ge 0$ 2. $\overrightarrow{a} \overrightarrow{b} = \overrightarrow{b} \overrightarrow{a}$ 3. $(\overrightarrow{a} + \overrightarrow{b}) \overrightarrow{c} = \overrightarrow{a} \overrightarrow{c} + \overrightarrow{b} \overrightarrow{c}$ 4. $(k\overrightarrow{a}) \overrightarrow{b} = k(\overrightarrow{a} \overrightarrow{b})$

Свойства

1.
$$\overrightarrow{a}^2 \ge 0$$

Уравнение прямой в общем виде ax + by = c, где a,b,c – числа

left При $b \neq 0$; $y = -rac{a}{L}x + rac{c}{L}$, приняв $-rac{a}{L} = k$, $rac{c}{L} = l$, получим y = kx + l

Выясним геометрический смысл коэффициента k.

$$\stackrel{B}{(x_2; y_2)}$$
 $y_2 - y_1$
1. $tg \alpha = \frac{y_2 - y_1}{x_2 - x_1}$

2.
$$\begin{cases} y_2 = kx_2 + l \\ y_1 = kx_1 + l \end{cases}$$

$$y_2-y_1=k\ (x_2-x_1)$$
 $l-?\;;\;x=0$, тогда $y=l$ $k=\frac{y_2-y_1}{x_2-x_1}$ $(0;l)$ – точка пересечен

 $k = tg \alpha$ – называется угловым коэффициентом

k > 0 (α – острый угол)

 $k \! < \! 0 \; (\alpha$ – тупой угол)

(0; l) – точка пересечения прямой y = kx + lс осью оу.

Рассмотрим частные случаи:

- 1. $b \neq 0$; $a \neq 0$; c = 0, тогда y = kx, график проходит через начало координат.
- 2. $b \neq 0$; a = 0; c = 0, тогда y = 0 уравнение оси ox.
- 3. $b \neq 0$; a = 0 ; $c \neq 0$, тогда y = l уравнение прямой, параллельной оси ox.
- **2** b = 0 ; $a \neq 0$; $c \neq 0$; $x = \frac{c}{a}$ уравнение прямой, параллельной оси *oy* b = 0 ; $a \neq 0$; c = 0 ; x = 0 – уравнение оси oy

Многоугольники. Длина окружности. Площадь круга



- **1.** Сумма углов выпуклого n-угольника равна $180^{\circ}(n-2)$
- **2.** Сумма внешних углов, взятых по одному при каждой вершине, равна 360°

 $C = 2\pi R$ – длина окружности;

 π – число иррациональное;

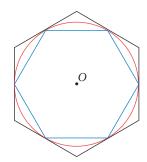
$$\pi \approx 3.14; \pi \approx \frac{22}{7}$$

$$l = \frac{\pi R}{180^{\circ}} n^{\circ} -$$
 длина дуги;

$$S = \pi R^2$$
 – площадь круга;

$$S = \frac{\pi R^2}{360^\circ} \cdot n^\circ$$
 – площадь сектора

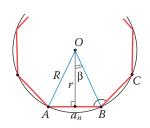
Формулы для правильного многоугольника



В правильном многоугольнике:

- **1.** Все стороны и углы равны.
- **2.** Точка O центр вписанной и описанной окружности.
- 3. Правильные выпуклые n-угольники подобны ⇒

$$rac{a_1}{a_2} = rac{
ho_1}{
ho_2} = rac{R_1}{R_2} = rac{r_1}{r_2} = k \; ext{(ЧИСЛО)} \; ; \qquad rac{S_1}{S_2} = k^2 \ \kappa o ext{ коэффициент} \ nodo бия \ \end{tabular}$$



$$\angle ABC = \frac{180°(n-2)}{n}$$
 — внутренний угол n-угольника

$$\angle AOB = \frac{360^{\circ}}{n}$$
 — центральный угол n-угольника

$$a_n = 2R \cdot \sin \frac{180^{\circ}}{n}$$

$$r = R \cdot \cos \frac{180^{\circ}}{n}$$

$$S = \frac{1}{2} \rho_n \cdot r$$

$a_6 = R$	$r = \frac{R\sqrt{3}}{2}$	$a_6 = \frac{2\sqrt{3}r}{3}$	$S_6 = \frac{3\sqrt{3}a^2}{2}$
$a_4 = R \sqrt{2}$	$r = \frac{R\sqrt{2}}{2}$	$a_4 = 2r$	$S_4 = a^2$
$a_3 = R \sqrt{3}$	$r = \frac{1}{2}R$	$a_3 = 2 r \sqrt{3}$	$S_3 = \frac{a^2 \sqrt{3}}{4}$

Движение

Определение

Движение – отображение плоскости на себя, при котором сохраняются расстояния между точками.

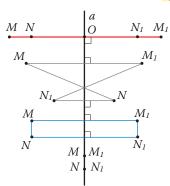
Свойства движений

- 1. Прямая отображается на прямую, луч на луч, отрезок на отрезок.
- 2. Отрезок отображается на равный отрезок, угол на равный угол, треугольник на равный ему треугольник.

Примеры движения

- 1. Осевая симметрия
- 2. Центральная симметрия
- 3. Параллельный перенос
- 4. Поворот

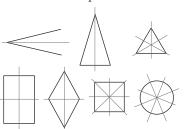
ОСЕВАЯ СИММЕТРИЯ (Обозначим Sa)



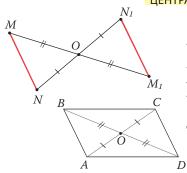
По определению $M_1 = Sa(M)$, tak kak: 1) $MM_1 \perp a$; 2) $MO = OM_1$

 $M_1 N_1 = Sa (MN)$ $Sa(MNN_1M_1) = M_1N_1NM$ Получили ту же фигуру. В таком случае говорят, что фигура имеет осевую симметрию.

Фигуры, обладающие осевой симметрией



ЦЕНТРАЛЬНАЯ СИММЕТРИЯ (Обозначим S_0)



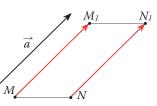
По определению $N_1 = So(N)$, Tak kak: 1) $O \in NN_1$; 2) $NO = ON_1$

 $M_1 N_1 = So(MN)$ So(ABCD) = CDABПолучили ту же фигуру. Данная фигура обладает центральной симметрией.

Фигуры, обладающие центральной симметрией

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм. Прямая также обладает центральной симметрией, только в отличии от окружности и параллелограмма, которые имеют только один центр симметрии, у прямой их бесконечно много.

ПАРАЛЛЕЛЬНЫЙ ПЕРЕНОС



 N_1 Параллельный перенос задан вектором \overrightarrow{a}

> $\overrightarrow{a}(M) = M_1$; $\overrightarrow{a}(N) = N_1$; $\overrightarrow{a}(MN) = M_1 N_1$

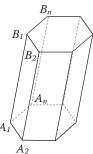
Поворот задан центром и углом поворота X $X \to X^I$, если $OX^I = OX$ $/X^{I}OX = \alpha$ т. *O* – центр

ПОВОРОТ

 α – угол поворота

Многогранники

Призма



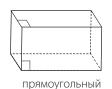
Многоугольники $A_1A_2...A_n$ и $B_1B_2...B_n$ — основания призмы. Параллелограммы $A_1A_2B_2B_1$, ... , $A_nA_1B_1B_n$ — боковые грани.

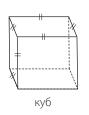
правильная треугольная призма

1. S_{60K} равна сумме площадей боковых граней.

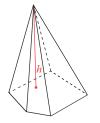
2. $S_{noлh} = S_{6oK} + 2 S_{och};$ 3. $V = S_{och} \cdot h$

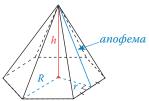
Параллелепипед





Пирамида





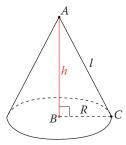
Правильная пирамида

Основание – правильный многоугольник. Вершина проектируется в его центр.

- **1.** S_{60K} равна сумме площадей боковых граней.
- $2. S_{nonh} = S_{60K} + S_{och}$
- $3. V = \frac{1}{3} S_{OCH} \cdot h$

Тела вращения

Конус

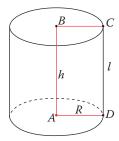


Конус получен вращением прямоугольного треугольника *АВС* вокруг катета *АВ*.

$$S_{60\kappa} = \pi R l$$

$$V = \frac{1}{3} \pi R^2 \cdot h$$

Цилиндр

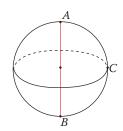


Цилиндр получен вращением прямоугольника ABCD вокруг стороны AB.

$$S_{60K} = 2\pi R l$$

$$V = \pi R^2 \cdot h$$

Шар



Шар получен вращением полукруга *ACB* вокруг диаметра *AB*.

$$S = 4\pi R^2$$

$$V = \frac{4}{3}\pi R^3$$

О методе

За основу данного справочного пособия взят авторский метод Гориной Д.А. Он изложен в форме книжки-раскладушки. Весь учебный материал по геометрии 9-го класса представлен, как на ладони, и его можно охватить единым взглядом. Метод Гориной Д.А. позволяет легко освоить знания по геометрии и прочно укрепить их в памяти. Русунки, графики и цветовое оформление материала облегчают обучение. Эффективность данного метода проверена годами на практике. Пособие предназначено для учащихся, учителей, родителей.

Горина Д.А. – учитель с многолетним педагогическим стажем. Она преподавала математику во всех параллелях (с 5 по 10 классы), в том числе и в классах с углубленным изучением математики. Кроме того, она обладает большим опытом работы с трудными учениками. Учитель высшей категории, отличник народного просвещения, Горина Д.А. имеет награду Института «Открытое общество» – Грант Сороса.

Об авторе

Пособие, которое вы держите в руках, первоначально я разработала специально для своих учеников, которые с трудом осваивали геометрию по обычным учебникам. Я решила представить для них учебный материал как можно доступнее: в сжатой и наглядной форме.

В результате благодаря этому методу моим ученикам было гораздо легче вспомнить пройденный материал и усвоить новый. Геометрия перестала быть для них сложным предметом.

Теперь я хочу поделиться со всеми накопленным опытом и искренне верю, что это пособие поможет любому ученику в освоении геометрии.

Другие книги автора

«Вся геометрия 7 класса в кратком изложении»

«Вся геометрия 8 класса в кратком изложении»

Горина Д.А.

Горина Д.А., Вся геометрия 9 класса в кратком изложении – М.: Евробукс, 2009. – 8 с.

- © Горина Д.А., 2009
- © «Евробукс», 2009