ПРОЕКТ

Единый государственный экзамен по МАТЕМАТИКЕ

Демонстрационный вариант

контрольных измерительных материалов единого государственного экзамена 2019 года по математике

Профильный уровень

подготовлен Федеральным государственным бюджетным научным учреждением

«ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

Демонстрационный вариант ЕГЭ 2019 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 2/19

Единый государственный экзамен по МАТЕМАТИКЕ

Пояснения к демонстрационному варианту контрольных измерительных материалов для единого государственного экзамена 2019 года по МАТЕМАТИКЕ

При ознакомлении с демонстрационным вариантом контрольных измерительных материалов ЕГЭ 2019 г. следует иметь в виду, что задания, включённые в него, не отражают всех вопросов содержания, которые будут проверяться с помощью вариантов КИМ в 2019 г. Полный перечень вопросов, которые могут контролироваться на едином государственном экзамене 2019 г., приведён в кодификаторе элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена 2019 г. по математике.

Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику $E\Gamma \ni$ и широкой общественности составить представление о структуре будущих КИМ, количестве заданий, об их форме и уровне сложности. Приведённые критерии оценки выполнения заданий с развёрнутым ответом, включённые в этот вариант, дают представление о требованиях к полноте и правильности записи развёрнутого ответа.

Эти сведения позволят выпускникам выработать стратегию подготовки к ЕГЭ.

^{© 2019} Федеральная служба по надзору в сфере образования и науки Российской Федерации

Демонстрационный вариант контрольных измерительных материалов для проведения в 2019 году единого государственного экзамена по МАТЕМАТИКЕ

Профильный уровень

Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 8 заданий с кратким ответом базового уровня сложности. Часть 2 содержит 4 задания с кратким ответом повышенного уровня сложности и 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–12 записываются по приведённому ниже <u>образцу</u> в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1.

«им Ответ: **-0,8** .

10-0,8

Бланк

Ответ:

При выполнении заданий 13–19 требуется записать полное решение и ответ в бланке ответов № 2.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, что ответ на каждое задание в бланках ответов № 1 и № 2 записан под правильным номером.

Желаем успеха!

Справочные материалы

$$\sin^{2}\alpha + \cos^{2}\alpha = 1$$

$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$

$$\cos 2\alpha = \cos^{2}\alpha - \sin^{2}\alpha$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

Демонстрационный вариант ЕГЭ 2019 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 4 / 19

Ответом к заданиям 1–12 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

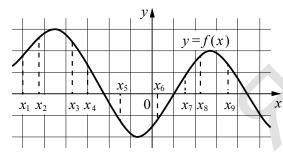
Часть 1

1	Поезд отправился из Санкт-Петербурга в 23 часа 50 минут (время московское) и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути? Ответ:
2	На рисунке точками показана средняя температура воздуха в Сочи за каждый месяц 1920 г. По горизонтали указаны номера месяцев; по вертикали — температура в градусах Цельсия. Для наглядности точки соединены линией.
	Сколько месяцев средняя температура была больше 18 градусов Цельсия? Ответ:
3	На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Демонстрационный вариант ЕГЭ 2019 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 5/19

В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене выпускнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.

Ответ: _______.


Найдите корень уравнения 3^{x-5}=81.

Ответ: ______.

Треугольник *АВС* вписан в окружность с центром *О.* Угол *ВАС* равен 32°. Найдите угол *ВОС*. Ответ дайте в градусах.

Ответ: ______.

7 На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: $x_1, x_2, ... x_9$.

Найдите все отмеченные точки, в которых производная функции f(x) отрицательна. В ответе укажите количество этих точек.

Ответ:					

8	В первом цилиндрическом сосуде уровень жидкости достигает 16 см. Эту жидкость перелили во второй цилиндрический сосуд, диаметр основания которого в 2 раза больше диаметра основания первого. На какой высоте будет находиться уровень жидкости во втором сосуде? Ответ выразите в см.
	Ответ:
	Не забудьте перенести все ответы в бланк ответов № 1.
	Часть 2
9	Найдите $\sin 2\alpha$, если $\cos \alpha = 0,6$ и $\pi < \alpha < 2\pi$.
	Ответ:
0	Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением
	$v = c \cdot \frac{f - f_0}{f + f_0},$
	где c =1500 м/с — скорость звука в воде; f_0 — частота испускаемого сигнала (в МГц); f — частота отражённого сигнала (в МГц). Найдите частоту отражённого сигнала (в МГц), если батискаф погружается со скоростью 2 м/с.
	Ответ:
1	Весной катер идёт против течения реки в $1\frac{2}{3}$ раза медленнее, чем по течению.
	Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт
	против течения в $1\frac{1}{2}$ раза медленнее, чем по течению. Найдите скорость
	течения весной (в км/ч).
	Ответ:
2	Найдите точку максимума функции $y = \ln(x+4)^2 + 2x + 7$.
	Ответ:
!)	Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, что каждый ответ записан в строке с номером соответствующего задания.

© 2019 Федеральная служба по надзору в сфере образования и науки Российской Федерации

Лемонстранионный рармант ЕГЭ 2010 г. МАТЕМАТИКА 11 класс Профильный удорень 6 / 10

а) Решите уравнение

$$2\sin\left(x+\frac{\pi}{3}\right)+\cos 2x=\sqrt{3}\cos x+1.$$

- б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.
- Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ имеют длину 6. Точки M и N— середины рёбер AA_1 и A_1C_1 соответственно.
 - а) Докажите, что прямые ВМ и МN перпендикулярны.
 - б) Найдите угол между плоскостями ВМN и АВВ 1.
- Решите неравенство $\log_{11} \left(8x^2 + 7 \right) \log_{11} \left(x^2 + x + 1 \right) \ge \log_{11} \left(\frac{x}{x+5} + 7 \right)$.
- Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
 - а) Докажите, что прямые AD и BC параллельны.
 - б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
- 15 января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
 - 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r **целое** число;
 - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
 - 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата	15.01	15.02	15.03	15.04	15.05	15.06	15.07
Долг (в млн рублей)	1,0	0,6	0,4	0,3	0,2	0,1	0

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.

© 2019 Федеральная служба по надзору в сфере образования и науки Российской Федерации

Демонстрационный вариант ЕГЭ 2019 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 8 / 19

18 Найдите все положительные значения a, при каждом из которых система

$$\begin{cases} (|x|-5)^2 + (y-4)^2 = 9, \\ (x+2)^2 + y^2 = a^2 \end{cases}$$

имеет единственное решение.

- В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали, по крайней мере, 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.
 - а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?
 - б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?
 - в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.

Проверьте, что каждый ответ записан рядом с номером соответствующего задания.