Тригонометрия

- 1. На листе бумаги нарисован график функции $y=\sin x$. Лист свернут в цилиндрическую трубочку так, что все точки, абсциссы которых отличаются на 2π , совмещены. Докажите, что все точки графика синусоиды при этом лежат в одной плоскости.
- **2.** Докажите, что для каждого x такого, что $\sin x \neq 0$, найдется такое натуральное n, что $|\sin nx| \geqslant \frac{\sqrt{3}}{2}$.
- **3.** Какое наибольшее количество множителей вида $\sin \frac{n\pi}{x}$ можно вычеркнуть в левой части уравнения

$$\sin\frac{\pi}{x}\sin\frac{2\pi}{x}\sin\frac{3\pi}{x}\dots\sin\frac{2018\pi}{x}=0$$

так, чтобы число его натуральных корней не изменилось?

- **4.** На плоскости даны оси координат с одинаковым, но не обозначенным масштабом и график функции $y = \sin x, \ x \in (0; \alpha)$. Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: (a) $\alpha \in (\frac{\pi}{2}; \pi)$; (b) $\alpha \in (0; \frac{\pi}{2})$?
- **5.** Существует ли такое положительное число α , что при всех действительных x верно неравенство $|\cos x| + |\cos \alpha x| > \sin x + \sin \alpha x$?
- **6.** Число x таково, что обе суммы $S=\sin 64x+\sin 65x$ и $C=\cos 64x+\cos 65x$ рациональные числа. Докажите, что в одной из этих сумм оба слагаемых рациональны.
- 7. Даны различные натуральные числа a,b. На координатной плоскости нарисованы графики функций $y=\sin ax,\ y=\sin bx$ и отмечены все точки их пересечения. Докажите, что существует натуральное число c, отличное от a,b и такое, что график функции $y=\sin cx$ проходит через все отмеченные точки.