Полуописанная окружность

Во всех задачах этого листика дан неравнобедренный остроугольный треугольник ABC. Точки I, I_A, I_B, I_C — центры вписанной и трех вневписанных окружностей треугольника ABC напротив вершин A, B, C соответственно. Вписанная окружность ω касается его сторон BC, CA, AB в точках A_1, B_1, C_1 соответственно. Обозначим через Ω_A окружность, проходящую через вершины B и C и касающуюся ω , точку касания назовем T_A .

- **1.** Докажите, что точки T_A , A_1 , I_A лежат на одной прямой.
- **2.** (а) Докажите, что точки T_A , B, C_1 , I_A лежат на одной окружности. (b) Окружность из предыдущего пункта пересекает прямую BC второй раз в точке S. Докажите, что $CS = CA_1$.

Середины отрезков A_1B_1 и A_1C_1 обозначим через M и N соответственно.

- **3.** Докажите, что касательные к ω в точках A_1 и T_A пересекаются на прямой MN.
- **4.** Докажите, что точки T_A , A_1 , N и C лежат на одной окружности.

Обозначим вторые точки пересечения отрезков AB и AC с окружностью Ω_A через P и Q соответственно

- **5.** (а) Докажите, что точки T_A , N, C_1 и P лежат на одной окружности. (b) Докажите, что проекция точки I на MN также лежит на окружности из пункта (а).
- **6.** Прямые $T_A M$ и $T_A N$ второй раз пересекают окружность Ω_A в точках X и Y соответственно. Докажите, что прямые $PX,\ QY,\ MN$ и AI пересекаются в одной точке.
- **7.** Докажите, что прямые $BM,\,CN$ и A_1T_A пересекаются в одной точке.
- **8.** Прямые BM и CN второй раз пересекают окружность ω_A в точках U и V. Докажите, что прямая UV проходит через середины отрезков B_1M и C_1N .

Аналогично определим Ω_B , Ω_C , T_B , T_C .

- **9.** Обозначим через W_A середину дуги BC окружности Ω_A , не содержащей точку T_A . Аналогично определим W_B , W_C . Докажите, что существует окружность, касающаяся окружностей Ω_A , Ω_B , Ω_C в точках W_A , W_B , W_C соответственно.
- **10.** Докажите, что прямые AT_A , BT_B , CT_C пересекаются в одной точке.