Geometry. IMO

Данный листок содержит все задачи по геометрии, которые предлагались на Международной математической олимпиаде (IMO) начиная с 2005 года.

Международная математическая олимпиада проходит в два дня. Задачи $1,2,3$ даются в первый день, задачи $4,5,6$ - во второй. В варианте каждого дня задачи обычно расположены по возрастанию сложности; таким образом, задачи 1 и 4 являются «простыми», задачи 2 и 5 «средней сложности», задачи 3 и 6 - самые трудные.

Принцип нумерации задач листка: задача 15.3 предлагалась в 2015 году под номером 3 .

Problems 1 and 4

15.4. Triangle $A B C$ has circumcircle Ω and circumcenter O. A circle Γ with center A intersects the segment $B C$ at points D and E, such that B, D, E, and C are all different and lie on line $B C$ in this order. Let F and G be the points of intersection of Γ and Ω, such that A, F, B, C, and G lie on Ω in this order. Let K be the second point of intersection of the circumcircle of triangle $B D F$ and the segment $A B$. Let L be the second point of intersection of the circumcircle of triangle $C G E$ and the segment $C A$.

Suppose that the lines $F K$ and $G L$ are different and intersect at the point X. Prove that X lies on the line $A O$.
14.4. Points P and Q lie on side $B C$ of acute-angled triangle $A B C$ so that $\angle P A B=\angle B C A$ and $\angle C A Q=\angle A B C$. Points M and N lie on lines $A P$ and $A Q$, respectively, such that P is the midpoint of $A M$, and Q is the midpoint of $A N$. Prove that lines $B M$ and $C N$ intersect on the circumcircle of triangle $A B C$.
13.4. Let $A B C$ be an acute-angled triangle with orthocenter H, and let W be a point on the side $B C$, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω_{1} the circumcircle of $B W N$, and let X be the point on ω_{1} such that $W X$ is a diameter of ω_{1}. Analogously, denote by ω_{2} the circumcircle of $C W M$, and let Y be the point on ω_{2} such that $W Y$ is a diameter of ω_{2}. Prove that X, Y and H are collinear.
12.1. Given triangle $A B C$ the point J is the centre of the excircle opposite the vertex A. This excircle is tangent to the side $B C$ at M, and to the lines $A B$ and $A C$ at K and L, respectively. The lines $L M$ and $B J$ meet at F, and the lines $K M$ and $C J$ meet at G. Let S be the point of intersection of the lines $A F$ and $B C$, and let T be the point of intersection of the lines $A G$ and $B C$.

Prove that M is the midpoint of $S T$.
10.4. Let P be a point inside the triangle $A B C$. The lines $A P, B P$ and $C P$ intersect the circumcircle Γ of triangle $A B C$ again at the points K, L and M respectively. The tangent to Γ at C intersects the line $A B$ at S. Suppose that $S C=S P$. Prove that $M K=M L$.
09.4. Let $A B C$ be a triangle with $A B=A C$. The angle bisectors of $\angle C A B$ and $\angle A B C$ meet the sides $B C$ and $C A$ at D and E, respectively. Let K be the incentre of triangle $A D C$. Suppose that $\angle B E K=45^{\circ}$. Find all possible values of $\angle C A B$.
08.1. An acute-angled triangle $A B C$ has orthocentre H. The circle passing through H with centre the midpoint of $B C$ intersects the line $B C$ at A_{1} and A_{2}. Similarly, the circle passing through H with centre the midpoint of $C A$ intersects the line $C A$ at B_{1} and B_{2}, and the circle passing through H with centre the midpoint of $A B$ intersects the line $A B$ at C_{1} and C_{2}. Show that $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$, C_{2} lie on a circle.
07.4. In triangle $A B C$ the bisector of angle $B C A$ intersects the circumcircle again at R, the perpendicular bisector of $B C$ at P, and the perpendicular bisector of $A C$ at Q. The midpoint of $B C$ is K and the midpoint of $A C$ is L. Prove that the triangles $R P K$ and $R Q L$ have the same area.
06.1. Let $A B C$ be a triangle with incenter I. A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B
$$

Show that $A P \geqslant A I$, and that equality holds if and only if $P=I$.
05.1. Six points are chosen on the sides of an equilateral triangle $A B C$: A_{1}, A_{2} on $B C, B_{1}, B_{2}$ on $C A$ and C_{1}, C_{2} on $A B$, such that they are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths.

Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.

Problems 2 and 5

12.5. Let $A B C$ be a triangle with $\angle B C A=90^{\circ}$, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment $C D$. Let K be the point on the segment $A X$ such that $B K=B C$. Similarly, let L be the point on the segment $B X$ such that $A L=A C$. Let M be the point of intersection of $A L$ and $B K$.

Show that $M K=M L$.
11.2. Let \mathcal{S} be a finite set of at least two points in the plane. Assume that no three points of \mathcal{S} are collinear. A windmill is a process that starts with a line ℓ going through a single point $P \in \mathcal{S}$. The line rotates clockwise about the pivot P until the first time that the line meets some other point belonging to \mathcal{S}. This point, Q, takes over as the new pivot, and the line now rotates clockwise about Q, until it next meets a point of \mathcal{S}. This process continues indefinitely.

Show that we can choose a point P in \mathcal{S} and a line ℓ going through P such that the resulting windmill uses each point of \mathcal{S} as a pivot infinitely many times.
10.2. Let I be the incentre of triangle $A B C$ and Γ be its circumcircle. Let the line $A I$ intersects Γ again at D. Let E be a point on the arc $B D C$, and F a point on the side $B C$ such that

$$
\angle B A F=\angle C A E<\frac{1}{2} \angle B A C .
$$

Finally, let G be the midpoint of segment $I F$. Prove that the lines $D G$ and $E I$ intersect on Γ.
09.2. Let $A B C$ be a triangle with circumcentre O. The points P and Q are interior points of the sides $C A$ and $A B$, respectively. Let K, L and M be the midpoints of the segments $B P, C Q$ and $P Q$, respectively, and let Γ be the circle passing through K, L and M. Suppose that the line $P Q$ is tangent to the circle Γ. Prove that $O P=O Q$.
07.2. Consider five points A, B, C, D and E such that $A B C D$ is a parallelogram and $B C E D$ is a cyclic quadrilateral. Let ℓ be a line passing through A. Suppose that ℓ intersects the interior of the segment $D C$ at F and intersects line $B C$ at G. Suppose also that $E F=E G=E C$. Prove that ℓ is the bisector of $\angle D A B$.
05.5. Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $B C$ not parallel with $D A$. Let two variable points E and F lie of the sides $B C$ and $D A$, respectively and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R.

Prove that the circumcircles of the triangles $P Q R$, as E and F vary, have a common point other than P.

Problems 3 and 6

15.3. Let $A B C$ be an acute triangle with $A B>A C$. Let Γ be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of $B C$. Let Q be the point on Γ such that $\angle H Q A=90^{\circ}$, and K be the point on Γ such that $\angle H K Q=90^{\circ}$. Assume that the points A, B, C, K, and Q are all different, and lie on Γ in this order.

Prove that the circumcircles of triangles $K Q H$ and $F K M$ are tangent to each other.
14.3. Convex quadrilateral $A B C D$ has $\angle A B C=\angle C D A=90^{\circ}$. Point H is the foot of the perpendicular from A to $B D$. Points S and T lie on sides $A B$ and $A D$, respectively, such that H lies inside triangle $S C T$ and

$$
\angle C H S-\angle C S B=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ} .
$$

Prove that line $B D$ is tangent to the circumcircle of triangle TSH.
13.3. Let the excircle of triangle $A B C$ opposite the vertex A be tangent to the side $B C$ at the point A_{1}. Define the points B_{1} on $C A$ and C_{1} on $A B$ analogously, using the excircles opposite B and C, respectively. Suppose that the circumcentre of triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of triangle $A B C$. Prove that triangle $A B C$ is right-angled.
11.6. Let $A B C$ be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓ_{a}, ℓ_{b} and ℓ_{c} be the lines obtained by reflecting ℓ in the lines $B C, C A$ and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b} and ℓ_{c} is tangent to the circle Γ.
08.6. Let $A B C D$ be a convex quadrilateral with $|B A| \neq|B C|$. Denote the incircles of triangles $A B C$ and $A D C$ by ω_{1} and ω_{2} respectively. Suppose that there exists a circle ω tangent to the ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to the lines $A D$ and $C D$. Prove that the common external tangents of ω_{1} and ω_{2} intersect on ω.
06.6. Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P.

