

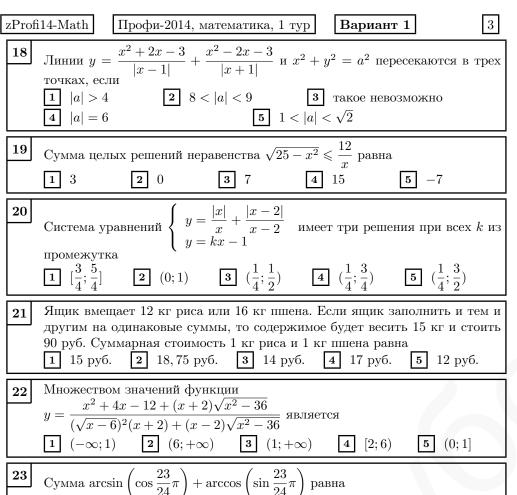

| zPr | гоfi14-Math Профи-2014, математика, 1 тур Вариант 1                                                                                                                                                                                                                                                                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | До кризиса фонд зарплаты учителей составлял $30\%$ общих расходов. Во время кризиса фонд зарплаты уменьшился на $\frac{620}{9}\%$ , то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют  1 $13\%$ 2 $16,(6)\%$ 3 $\frac{28}{3}\%$ 4 $20\%$ 5 $\frac{200}{17}\%$             |
|     |                                                                                                                                                                                                                                                                                                                     |
| 11  | Сумма всех значений $x$ , при которых числа $4^x$ ; $3, 5 \cdot 10^x$ ; $10 \cdot 25^x$ являются последовательными членами арифметической прогрессии, равна $\boxed{1} \ \lg^{-1} 0, 4 \ \boxed{2} \ \text{таких } x \text{ нет} \ \boxed{3} \ \log_{0,4} 5 \ \boxed{4} \ \log_{0,4} 2 \ \boxed{5} \ \lg^{-1} 2, 5$ |
| 10  | Page awayaya yanayayaa a yay yayanyy dayyyyya                                                                                                                                                                                                                                                                       |
| 12  | Все значения параметра $a$ , при которых функция $y = \sqrt{(2\sqrt{a}-1)x^2 + (\sqrt{a}-1)x + 0}, 2$ определена на всей числовой оси, образуют множество                                                                                                                                                           |
|     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                              |
|     |                                                                                                                                                                                                                                                                                                                     |
| 13  | Указать все $a$ , при которых уравнение $\frac{\sqrt{x+1}}{\sqrt{x-2}}$ $\times$                                                                                                                                                                                                                                    |
|     | $	imes rac{x^2+(x+2)\sqrt{x^2-x-2}-4}{x^2-(1-x)\sqrt{x^2-x-2}-1}=a$ имеет хотя бы один корень                                                                                                                                                                                                                      |
|     | $\boxed{1} \ (-\infty;1) \bigcup (1;+\infty) \ \boxed{2} \ (-1;-\frac{1}{4}) \ \boxed{3} \ (1;4) \ \boxed{4} \ (-1;-\frac{1}{3}) \ \boxed{5} \ (1;+\infty)$                                                                                                                                                         |
|     | Z 1 1 1 . A                                                                                                                                                                                                                                                                                                         |
| 14  | Все значения $a$ , при которых система уравнений $\left\{ \begin{array}{ll} y=- x-a +1 \\ x=-\sqrt{2y-y^2} \end{array} \right.$ имеет                                                                                                                                                                               |
|     | решения, образуют множество $ \boxed{ 1 } [-\sqrt{2};1] \ \boxed{ 2 } [-\sqrt{2};\sqrt{2}] \ \boxed{ 3 } [-1;1] \ \boxed{ 4 } [-\sqrt{2};0] \ \boxed{ 5 } [-\sqrt{8};\sqrt{8}]  $                                                                                                                                   |
|     | D                                                                                                                                                                                                                                                                                                                   |
| 15  | Расстояние между корнями квадратного уравнения с рациональными ко-<br>эффициентами, одним из корней которого является число $2 \cdot (7 - 4\sqrt{3})^{-1}$ ,                                                                                                                                                        |
|     | равно                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                                     |
| 16  | Сумма наибольшего и наименьшего значений функции $y=\frac{4}{3}\sqrt{\cos^2(\frac{3}{2}\pi+x)}+\frac{1}{3}\sin^2x-1$ заключена в интервале                                                                                                                                                                          |

 $[2] (-4; -\pi)$ 

f(x) = (0, 1x - 0, 2)(x + 3)(x - 4)(0, 2x + 1) - 2,02 равно

Наименьшее значение функции

[3]  $(\pi;4)$ 


**4** (1; 3)

 $\boxed{4}$  -2

1 (-1; 0, 5)

**1** −1

**5** (2; 3)



 $\frac{1}{24}\pi$   $\frac{3}{8}\pi$   $\frac{3}{8}\pi$   $\frac{3}{12}$  0  $\frac{4}{8}\pi$   $\frac{-\pi}{12}$ 

 $3 \log_5 7$ 

Сумма всех коэффициентов многочлена  $P(x) = ((1 - \cos \alpha)x - 1)^2 \times$  $\times ((\sin \alpha - 1)x + 1)^2 - (\sin^2 \alpha \cdot x^2 - 1) \cdot (\cos^2 \alpha \cdot x^2 + 1)$ , приведенного к стан-

 $3 \sin^2 \alpha$ 

4 36

 $|\mathbf{4}| \cos^2 \alpha$ 

 $| \mathbf{4} | -0,5$ 

**5** 25

 $\boxed{5}$  -3

5 1

Произведение корней уравнения  $x^{\log_7 5} = 25 \cdot 8^{\log_x 7}$  равно

**2** 49

 $|2x + a| \le |x + 1|$  является отрезок длины 1.

 $2\cos^2\alpha$ 

**1** 16

**1** 3

дартному виду, равна

 $1 \quad 2\sin^2\alpha$ 

```
Найдите сумму значений a, при которых решениями неравенства
```

zProfi14-Math

**1** 74

Профи-2014, математика, 1 тур

Сумма целых решений неравенства

на промежутке  $x \in [-4; 6]$  равна

**2** 6

**2** 71

при любых а из множества

Количество различных корней уравнения

 $(x-5\sqrt[3]{\log_5 2})(2+x)(2\sqrt[3]{\log_2^2 5}-x)(x-\pi) \le 0$ 

Решить неравенство  $3x + 4 > \sqrt{9 + 4x(x+3)} + \sqrt{-2x^2 - 8x + 10}$ 

**3** 9

 $\cos \frac{\pi x}{2} \cdot \sqrt{(x+4,5)(49\cos x - \sqrt{99}\sin x - 51)(x-211,5)} = 0$  равно

**3** 72

Неравенство  $x^2 - 3ax + (a-1)(2a+1) \le 0$  выполняется для всех  $x \in [3; 5]$ 

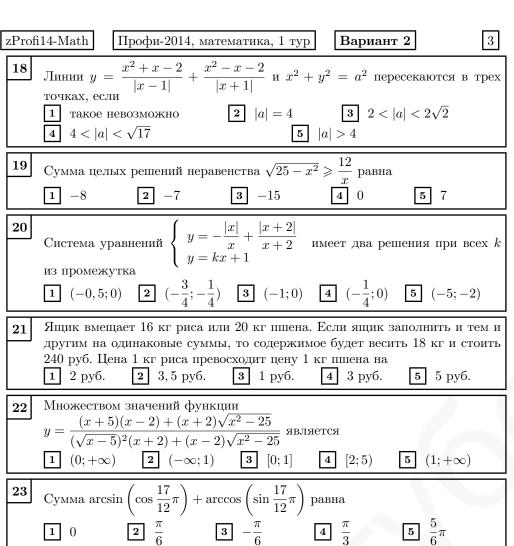
 $\boxed{1} \ (-\infty; 2] \bigcup [4; +\infty) \ \boxed{2} \ (-\infty; 3] \bigcup [6; +\infty) \ \boxed{3} \ [2; 6] \ \boxed{4} \ [3; 6] \ \boxed{5} \ [2; 4]$ 

 $\boxed{1} \ \left(-\frac{4}{3};1\right] \boxed{2} \ \left(\frac{\sqrt{13}-5}{3};1\right] \boxed{3} \ \left(-\frac{1}{3};1\right] \boxed{4} \ (-5;1] \boxed{5} \ \left(\frac{2\sqrt{13}-5}{3};1\right]$ 

4 3

Вариант 1

| zProfi | i14-Math Профи-2014, математика, 1 тур Вариант 2                                                                                                                                                                                                                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Значение выражения $\frac{1}{\sqrt{2a}-\sqrt{2a-1}}+\frac{1}{\sqrt{2a}+\sqrt{2a+1}}$ при $a>\frac{1}{2}$ равно $\boxed{1}$ $\sqrt{2a-1}-\sqrt{2a+1}$ $\boxed{2}$ $\sqrt{2a+1}-\sqrt{2a-1}$ $\boxed{3}$ $4a$ $\boxed{4}$ $\frac{-2}{\sqrt{2a-1}-\sqrt{2a+1}}$ $\boxed{5}$ $2\sqrt{2a}$                                                            |
| 2      | Если $10x^2 + 2y^2 - 6xy - 2x - 6y + 10 = 0$ , то $x + y$ равно  1 4 2 2 3 1 4 5 5 3                                                                                                                                                                                                                                                             |
| 3      | Площадь области на плоскости $Oxy$ , задаваемой условиями $\begin{cases} (y-1)^2 \leqslant 4 \\  x+y  \leqslant 2 \end{cases}$ , равна $\begin{cases} 1 & 12 & 2 & 6 & 3 & 16 & 4 \end{cases}$ замкнутой области нет $\begin{cases} 5 & 8 & 6 & 8 \end{cases}$                                                                                   |
| 4      | Среди приведенных, указать промежуток, где уравнение $\frac{x^2-x-2}{ x^2-x-2 }-(x-a)^2=0 \text{ не имеет корней}$                                                                                                                                                                                                                               |
| 5      | Если влажность пшеницы, поступившей на зерносушилку, составляла $44\%$ , а после просушки оказалась равной $20\%$ , то пшеница потеряла в весе 1 $\frac{300}{7}\%$ 2 $25\%$ 3 $24\%$ 4 $30\%$ 5 $32\%$                                                                                                                                           |
| 6      | Число корней уравнения $  x-\cos^2(\arctan(\sqrt{10+5\sqrt{12}})) -\sin^271^\circ =1 \text{ равно}$ 1 4 2 2 3 3 4 0 5 1                                                                                                                                                                                                                          |
| 7      | В области $\{-4\leqslant y+2x\leqslant 2,\ 1\leqslant y+x\leqslant 2\}$ наибольшее значение $\sqrt{x^2+y^2}$ равно 1 5 2 7,5 3 8 4 10 5 $\sqrt{17}$                                                                                                                                                                                              |
| 8      | Наименьший корень уравнения $\sqrt{x-\cos 15^{\circ}} + \sqrt{\cot g 15^{\circ}} - x = \sqrt{\cot g 15^{\circ}} - \cos 15^{\circ}, \text{ равен}$ $\boxed{1}  \frac{\sqrt{6}-\sqrt{2}}{4} \qquad \boxed{2}  2-\sqrt{3} \qquad \boxed{3}  2+\sqrt{3}$ $\boxed{4}  \text{уравнение корней не имеет} \qquad \boxed{5}  \frac{\sqrt{6}+\sqrt{2}}{4}$ |
| 9      | arctg(tg 4) равен<br>1 $2\pi - 4$ 2 $\pi + 4$ 3 $4 - \pi$ 4 5 $\pi - 4$                                                                                                                                                                                                                                                                          |


| 10 | До кризиса фонд зарплаты учителей составлял $20\%$ общих расходов. Во время кризиса фонд зарплаты уменьшился на $20\%$ , то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют $\boxed{1}$ $\frac{400}{29}\%$ $\boxed{2}$ $16\%$ $\boxed{3}$ $15\%$ $\boxed{4}$ $20\%$ $\boxed{5}$ $16, (6)\%$ |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                                                                                                                                      |
| 11 | Сумма всех значений $x$ , при которых числа $9^x$ ; $2 \cdot 6^x$ ; $3 \cdot 4^x$ являются последовательными членами арифметической прогрессии, равна $1 \log_{1,5} 4, 5$ $2 \log_{1,5} 3$ $3 0$ $4 \log_{0,(6)} 3$ $5$ таких $x$ нет                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                      |
| 12 | Все значения параметра $a$ , при которых функция $y = \sqrt{(3-\sqrt{a})x^2+(\sqrt{a}+4)x+9}$ определена на всей числовой оси, образуют множество $\boxed{1}$ $\boxed{[0;4]}$ $\boxed{2}$ $\boxed{4}$ $\boxed{3}$ $\boxed{[0;9)}$ $\boxed{4}$ $\boxed{[0;1]}$ $\boxed{5}$ $\boxed{[0;2]}$                                            |
|    |                                                                                                                                                                                                                                                                                                                                      |
| 13 | Указать все $a$ , при которых уравнение $\frac{\sqrt{x-3}}{\sqrt{x+1}}$ .                                                                                                                                                                                                                                                            |
|    | $\frac{x^2 + (1-x)\sqrt{x^2 - 2x - 3} - 1}{x^2 - (x+3)\sqrt{x^2 - 2x - 3} - 9} = a$ имеет хотя бы один корень                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                                                                                                                                      |
|    | $\boxed{1} (-\infty; -1) \bigcup (-1; +\infty) \boxed{2} (1; 3) \boxed{3} (-1; +\infty) \boxed{4} (-1; -\frac{1}{3}) \boxed{5} (-1; -\frac{1}{4})$                                                                                                                                                                                   |
|    | <del></del>                                                                                                                                                                                                                                                                                                                          |
| 14 | Все значения $a$ , при которых система уравнений $\left\{ \begin{array}{ll} y=- x-a -1\\ x=-\sqrt{-2y-y^2} \end{array} \right.$ имеет решения, образуют множество $\boxed{1 \ [-\sqrt{2};\sqrt{2}] \ 2 \ [-1;1] \ 3 \ [-\sqrt{2};1] \ 4 \ [-\sqrt{2};0] \ 5 \ [-2\sqrt{2};2\sqrt{2}] }$                                              |
|    |                                                                                                                                                                                                                                                                                                                                      |
| 15 | Расстояние между корнями квадратного уравнения с рациональными коэффициентами, одним из корней которого является число $2 \cdot (\sqrt{5}-2)^{-1}$ , равно                                                                                                                                                                           |
|    |                                                                                                                                                                                                                                                                                                                                      |
| 16 | Сумма наибольшего и наименьшего значений функции $y=\frac{1}{3}$ .                                                                                                                                                                                                                                                                   |
|    | $\sqrt{\sin^2(\frac{3}{2}\pi + x) + 2\cos^2 x - 2}$ заключена в интервале                                                                                                                                                                                                                                                            |
|    | <u>-</u>                                                                                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                                                                                                      |
|    |                                                                                                                                                                                                                                                                                                                                      |
| 17 | Наименьшее значение функции                                                                                                                                                                                                                                                                                                          |
|    | f(x) = (0, 1x + 0, 3)(x - 1)(x - 2)(0, 1x - 0, 6) равно<br>1 -2 2 -3 3 -1 4 1 5 2                                                                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                                                                                                                                                      |

Профи-2014, математика, 1 тур

zProfi14-Math

2

Вариант 2



Произведение корней уравнения  $x^{\log_6 8} = 64 \cdot 7^{\log_x 6}$  равно

**3** 25

[3] -0.5

3 1

Сумма всех коэффициентов многочлена  $P(x) = ((1 + \cos \alpha)x - 1)^2 \times$  $\times ((\sin \alpha + 1)x - 1)^2 - (\cos^2 \alpha \cdot x^2 + 1) \cdot (\sin^2 \alpha \cdot x^2 - 1)$ , приведенного к стан-

4 16

 $|\mathbf{4}| 2\cos^2 \alpha$ 

**2** 36

 $|2x-a| \leq |x-1|$  является отрезок длины 1.

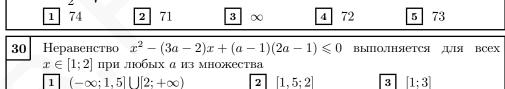
 $2\sin^2\alpha$ 

 $\log_8 6$ 

1 3

 $1 \cos^2 \alpha$ 

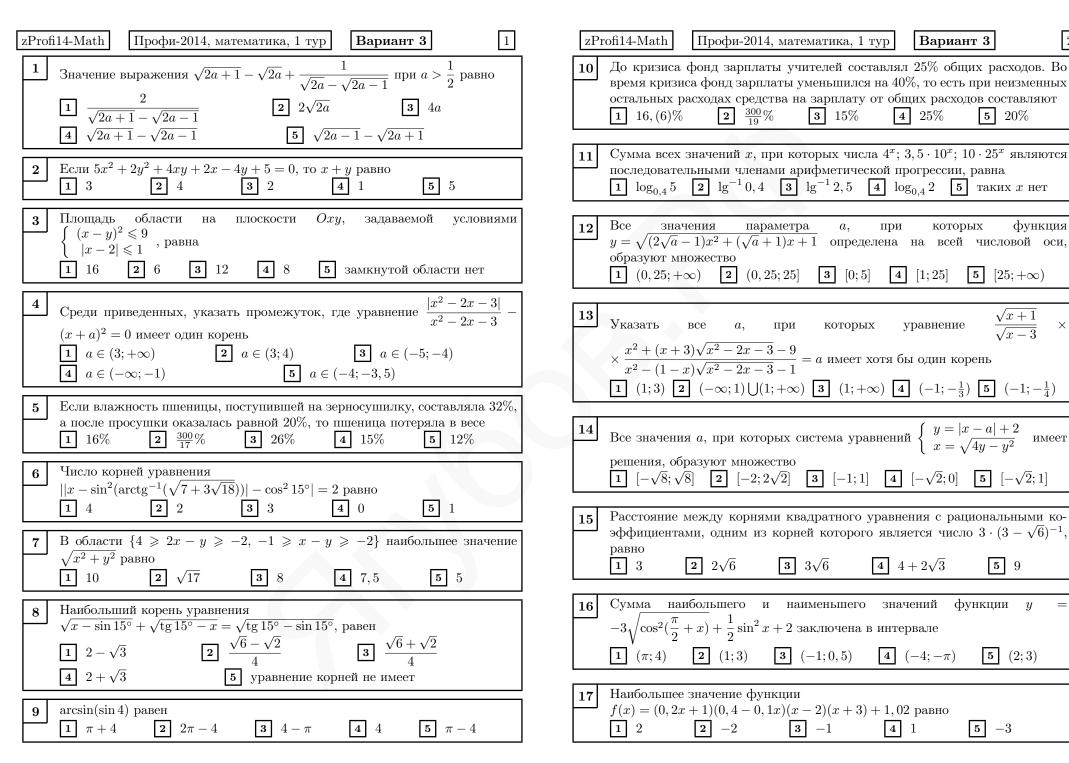
дартному виду, равна


```
Найдите сумму значений a, при которых решениями неравенства
```

**5** 49

**5** 4

 $|\mathbf{5}| \sin^2 \alpha$ 

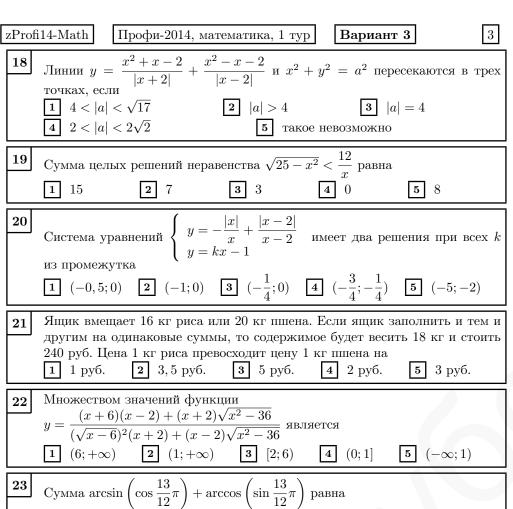





**5** [1, 5; 3]

 $\sin\frac{\pi x}{2}\cdot\sqrt{(x+5,5)(40\sin x-\sqrt{80}\cos x-41)(x-140)}=0$  равно

 $(-\infty;1] \bigcup [3;+\infty)$ 




|    | время кризиса фонд зарплаты уменьшился на $40\%$ , то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют 1 $16, (6)\%$ 2 $\frac{300}{19}\%$ 3 $15\%$ 4 $25\%$ 5 $20\%$                                                                                                                           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | Сумма всех значений $x$ , при которых числа $4^x$ ; $3, 5 \cdot 10^x$ ; $10 \cdot 25^x$ являются последовательными членами арифметической прогрессии, равна $1 \log_{0,4} 5$ $2 \lg^{-1} 0, 4$ $3 \lg^{-1} 2, 5$ $4 \log_{0,4} 2$ $5$ таких $x$ нет                                                                                    |
| 12 | Все значения параметра $a$ , при которых функция $y=\sqrt{(2\sqrt{a}-1)x^2+(\sqrt{a}+1)x+1}$ определена на всей числовой оси, образуют множество $1$ $(0,25;+\infty)$ $2$ $(0,25;25]$ $3$ $[0;5]$ $4$ $[1;25]$ $5$ $[25;+\infty)$                                                                                                      |
| 13 | Указать все $a$ , при которых уравнение $\frac{\sqrt{x+1}}{\sqrt{x-3}} \times \frac{x^2+(x+3)\sqrt{x^2-2x-3}-9}{x^2-(1-x)\sqrt{x^2-2x-3}-1} = a$ имеет хотя бы один корень $\boxed{1} \ (1;3) \ \boxed{2} \ (-\infty;1) \bigcup (1;+\infty) \ \boxed{3} \ (1;+\infty) \ \boxed{4} \ (-1;-\frac{1}{3}) \ \boxed{5} \ (-1;-\frac{1}{4})$ |
| 14 | Все значения $a$ , при которых система уравнений $\begin{cases} y= x-a +2\\ x=\sqrt{4y-y^2} \end{cases}$ имеет решения, образуют множество $\begin{bmatrix} 1 & [-\sqrt{8};\sqrt{8}] & 2 & [-2;2\sqrt{2}] & 3 & [-1;1] & 4 & [-\sqrt{2};0] & 5 & [-\sqrt{2};1] \end{cases}$                                                            |
| 15 | Расстояние между корнями квадратного уравнения с рациональными коэффициентами, одним из корней которого является число $3\cdot(3-\sqrt{6})^{-1}$ , равно 1 3 $2\sqrt{6}$ 1 $3\sqrt{6}$ 4 $4+2\sqrt{3}$ 5 9                                                                                                                             |
| 16 | Сумма наибольшего и наименьшего значений функции $y=-3\sqrt{\cos^2(\frac{\pi}{2}+x)}+\frac{1}{2}\sin^2x+2$ заключена в интервале                                                                                                                                                                                                       |
| 17 | Наибольшее значение функции $f(x)=(0,2x+1)(0,4-0,1x)(x-2)(x+3)+1,02\ \mathrm{paвнo}$ 1 2 2 3 -1 4 1 5 -3                                                                                                                                                                                                                               |
|    |                                                                                                                                                                                                                                                                                                                                        |

Профи-2014, математика, 1 тур

zProfi14-Math

Вариант 3



**2** 0 **3**  $-\frac{5\pi}{6}$  **4**  $\frac{\pi}{6}$  **5**  $\frac{2}{3}\pi$ 

**3** 25

Сумма всех коэффициентов многочлена  $P(x) = ((1 + \sin \alpha)x - 1)^2 \times$  $\times ((\cos \alpha + 1)x - 1)^2 - (\sin^2 \alpha \cdot x^2 + 1) \cdot (\cos^2 \alpha \cdot x^2 - 1)$ , приведенного к стан-

 $3 2\sin^2 \alpha$ 

4 1

Произведение корней уравнения  $x^{\log_4 7} = 49 \cdot 8^{\log_x 4}$  равно

**2** 16

 $|2x + a| \le |x - 1|$  является отрезок длины 1.

 $\sin^2 \alpha$ 

 $\frac{1}{6}\pi$ 

 $\log_7 4$ 

|1| -0.5

 $1 \quad 2\cos^2\alpha$ 

дартному виду, равна

```
Найдите сумму значений a, при которых решениями неравенства
```

**5** 36

**5** 4

 $|\mathbf{5}| \cos^2 \alpha$ 

zProfi14-Math

1 74

**4** [1; 4]

Профи-2014, математика, 1 тур

Сумма целых решений неравенства

на промежутке  $x \in [-6; 5]$  равна

 $(x-4\sqrt[3]{\log_4 3})(x-\pi)(3\sqrt[3]{\log_3 4}-x)(x+4) \ge 0$ 

Количество различных корней уравнения

**2** 73

 $x \in [1;3]$  при любых a из множества

 $1 \quad (-\infty; 1] \cup [4; +\infty)$ 

Решить неравенство  $4x - 5 > \sqrt{1 + x(x+2)} + \sqrt{-3x^2 + 6x + 24}$ 

3 -7

 $\cos\left(\frac{\pi x}{2} - \frac{\pi}{2}\right) \cdot \sqrt{(x+140)(\sqrt{99}\sin x - 49\cos x - 51)(x-4,5)} = 0$  pabo

**3** 71

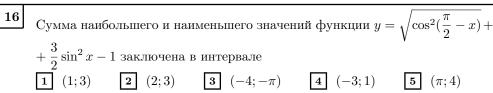
Неравенство  $x^2 + (2-3a)x + (1-a)(1-2a) \ge 0$  выполняется для всех

 $\boxed{\mathbf{2}} \quad (-\infty; 1] \bigcup [2; +\infty)$ 

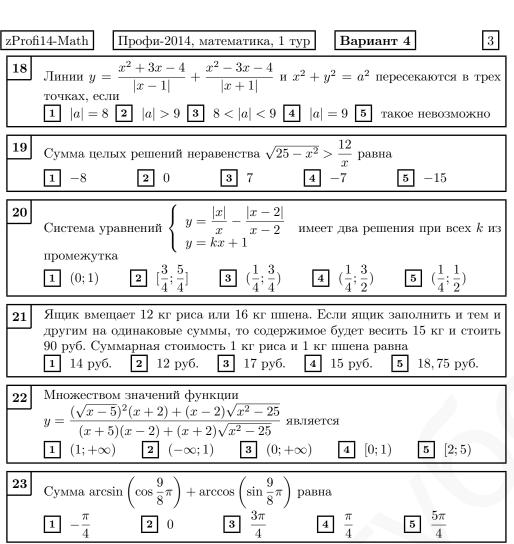
 $[5] (-\infty; 0] [1] [2; +\infty)$ 

1 (3;4) 2  $\left(\frac{7+\sqrt{33}}{4};4\right)$  3  $\left(\frac{5}{4};2\right)$  4 (-2;4) 5  $\left(\frac{4+\sqrt{33}}{4};4\right)$ 

Вариант 3


 $\boxed{5}$  -4

**3** [2; 4]


| zProf | i14-Math Профи-2014, математика, 1 тур Вариант 4                                                                                                                                                                                                                                                                                                 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Значение выражения $\sqrt{2a} - \sqrt{2a-1} + \frac{1}{\sqrt{2a} + \sqrt{2a+1}}$ при $a > \frac{1}{2}$ равно $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                              |
| 2     | Если $5x^2 + 2y^2 + 4xy + 2x - 4y + 5 = 0$ , то $y - x$ равно  1 4 2 5 3 3 4 1 5 2                                                                                                                                                                                                                                                               |
| 3     | Площадь области на плоскости $Oxy$ , задаваемой условиями $\begin{cases} (x-2)^2 \leqslant 1 \\  x-y  \leqslant 3 \end{cases}$ , равна $\begin{bmatrix} 1 & 8 & 2 & 6 \end{bmatrix}$ 3 замкнутой области нет $\begin{bmatrix} 4 & 12 & 5 \end{bmatrix}$ 16                                                                                       |
| 4     | Среди приведенных, указать промежуток, где уравнение $\frac{ x^2-x-2 }{x^2-x-2}+$ $(x+a)^2=0$ имеет два различных корня $\boxed{1} \ a\in(0,5;1)$ $\boxed{2} \ a\in(-0,5;0)$ $\boxed{3} \ a\in(0;0,5)$ $\boxed{4} \ a\in(-\infty;-2)$ $\boxed{5} \ a\in(3;+\infty)$                                                                              |
| 5     | Если влажность пшеницы, поступившей на зерносушилку, составляла $40\%$ , а после просушки оказалась равной $20\%$ , то пшеница потеряла в весе 1 $15\%$ 2 $\frac{100}{3}\%$ 3 $25\%$ 4 $20\%$ 5 $30\%$                                                                                                                                           |
| 6     | Число корней уравнения $  x-\cos^2(\arctan(\sqrt{10+5\sqrt{12}})) -\sin^271^\circ =1 \text{ равно}$ 1 2 2 3 3 1 4 0 5 4                                                                                                                                                                                                                          |
| 7     | В области $\{-4\leqslant y-2x\leqslant 2,\ 1\leqslant y-x\leqslant 2\}$ наибольшее значение $\sqrt{x^2+y^2}$ равно 1 7,5 2 $\sqrt{17}$ 3 8 4 5 5 10                                                                                                                                                                                              |
| 8     | Наибольший корень уравнения $\sqrt{x-\cos 15^{\circ}} + \sqrt{\cot g 15^{\circ}} - x = \sqrt{\cot g 15^{\circ}} - \cos 15^{\circ}, \text{ равен}$ $\boxed{1}  \frac{\sqrt{6}-\sqrt{2}}{4} \qquad \boxed{2}  2-\sqrt{3} \qquad \boxed{3}  2+\sqrt{3}$ $\boxed{4}  \text{уравнение корней не имеет} \qquad \boxed{5}  \frac{\sqrt{6}+\sqrt{2}}{4}$ |
| 9     | arcctg(ctg 4) равен<br>$\boxed{1} \pi - 4$ $\boxed{2} 4 - \pi$ $\boxed{3} 2\pi - 4$ $\boxed{4} \pi + 4$ $\boxed{5} 4$                                                                                                                                                                                                                            |

| zPr | обі14-Маth Профи-2014, математика, 1 тур Вариант 4                                                                                                                                                                                                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | До кризиса фонд зарплаты учителей составлял $25\%$ общих расходов. Во время кризиса фонд зарплаты уменьшился на $25\%$ , то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют 1 $18,75\%$ 2 $25\%$ 3 $\frac{300}{17}\%$ 4 $16,(6)\%$ 5 $20\%$ |
| 11  | Сумма всех значений $x$ , при которых числа $9^x$ ; $2 \cdot 6^x$ ; $3 \cdot 4^x$ являются после-                                                                                                                                                                                    |
| 11  | довательными членами арифметической прогрессии, равна                                                                                                                                                                                                                                |
|     | 1 $\log_{1,5} 3$ 2 $\log_{1,5} 4,5$ 3 Takux $x$ Het 4 0 5 $\log_{0,(6)} 3$                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                                                                                      |
| 12  | Все значения параметра $a$ , при которых функция $y=\sqrt{(2\sqrt{a}-1)x^2+(\sqrt{a}+1)x+0,75}$ определена на всей числовой оси, образуют множество                                                                                                                                  |
|     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                      |
| 13  | Указать все $a$ , при которых уравнение $\frac{\sqrt{x-2}}{\sqrt{x+1}}$ $\times$                                                                                                                                                                                                     |
|     | $	imes rac{x^2+(1-x)\sqrt{x^2-x-2}-1}{x^2-(x+2)\sqrt{x^2-x-2}-4}=a$ имеет хотя бы один корень                                                                                                                                                                                       |
|     | 1 $(1;3)$ 2 $(-1;+\infty)$ 3 $(-\infty;-1)$ $\bigcup (-1;+\infty)$ 4 $(-1;-\frac{1}{3})$ 5 $(-1;-\frac{1}{4})$                                                                                                                                                                       |
|     | <u>*</u>                                                                                                                                                                                                                                                                             |
| 14  | Все значения $a$ , при которых система уравнений $\left\{ \begin{array}{ll} y=- x-a +2\\ x=-\sqrt{4y-y^2} \end{array} \right.$ имеет                                                                                                                                                 |
|     | решения, образуют множество<br>$ \boxed{ 1 } [-1;1] $ $\boxed{ 2 } [-\sqrt{2};1] $ $\boxed{ 3 } [-2\sqrt{2};2] $ $\boxed{ 4 } [-\sqrt{2};0] $ $\boxed{ 5 } [-\sqrt{8};\sqrt{8}] $                                                                                                    |
|     | D.                                                                                                                                                                                                                                                                                   |
| 15  | Расстояние между корнями квадратного уравнения с рациональными коэффициентами, одним из корней которого является число $2 \cdot (\sqrt{5} + 2)^{-1}$ ,                                                                                                                               |
|     | равно $\boxed{1} \ 4 + 2\sqrt{5}$ $\boxed{2} \ 4$ $\boxed{3} \ 2\sqrt{5}$ $\boxed{4} \ 4\sqrt{5}$ $\boxed{5} \ 8$                                                                                                                                                                    |
|     |                                                                                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                                                                                      |

2



| 17 | Наибольше        | е значение фу | нкции            |                 |   |
|----|------------------|---------------|------------------|-----------------|---|
|    | f(x) = (x +      | (3)(0,1x-0,1) | (0,1x-0,2)(6     | -x) равно       |   |
|    | $\boxed{1}$ $-3$ | <b>2</b> 2    | $\boxed{3}$ $-1$ | $\boxed{4}  -2$ | 5 |



Произведение корней уравнения  $x^{\log_7 6} = 36 \cdot 9^{\log_x 7}$  равно

**3** 25

Сумма всех коэффициентов многочлена  $P(x) = ((1 - \sin \alpha)x - 1)^2 \times$  $\times ((\cos \alpha - 1)x + 1)^2 - (\cos^2 \alpha \cdot x^2 - 1) \cdot (\sin^2 \alpha \cdot x^2 + 1)$ , приведенного к стан-

**3** 1

 $4 \log_e 7$ 

 $|\mathbf{4}| 2\sin^2\alpha$ 

**2** 36

 $|2x-a| \leq |x+1|$  является отрезок длины 1.

 $\sin^2 \alpha$ 

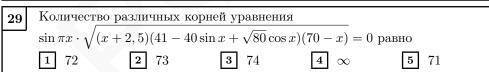
**1** 49

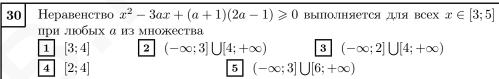
 $\begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$ 

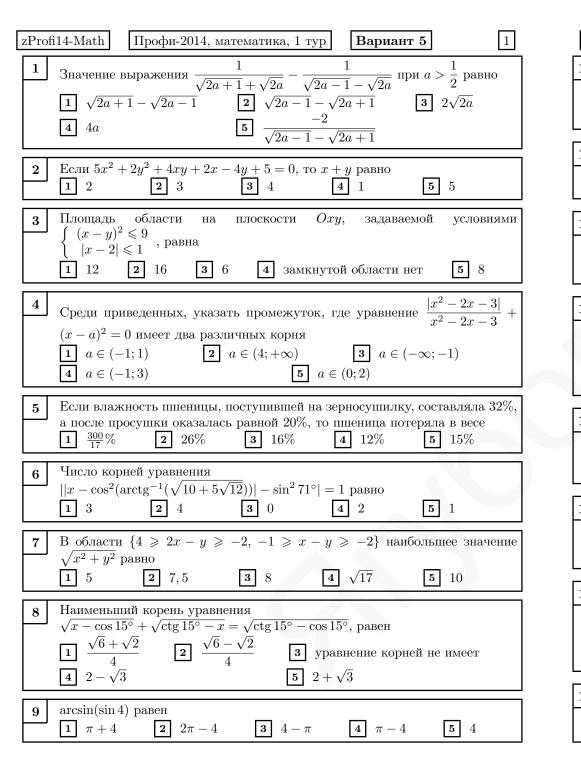
 $1 \cos^2 \alpha$ 

дартному виду, равна

zProfi14-Math


```
Найдите сумму значений a, при которых решениями неравенства
```


**5** 16


 $\boxed{5}$  -3

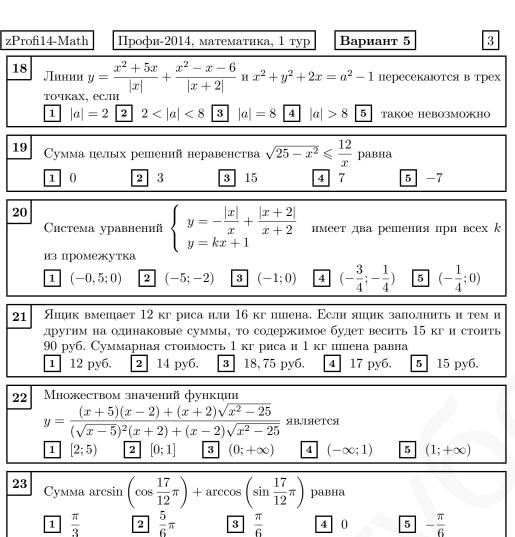
 $|\mathbf{5}| 2\cos^2 \alpha$ 










|    | 1 20% 2 15% 3 $\frac{400}{29}\%$ 4 16% 5 16,(6)%                                                                                                                                                                                                                     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | Сумма всех значений $x$ , при которых числа $4^x$ ; $3, 5 \cdot 10^x$ ; $10 \cdot 25^x$ являются последовательными членами арифметической прогрессии, равна $1  \lg^{-1} 0, 4  2  \log_{0,4} 5  3  \text{таких } x \text{ нет}  4  \log_{0,4} 2  5  \lg^{-1} 2, 5$   |
|    |                                                                                                                                                                                                                                                                      |
| 12 | Все значения параметра $a$ , при которых функция $y = \sqrt{(2\sqrt{a}-2)x^2 + (\sqrt{a}-1)x - 1}$ определена на всей числовой оси, образуют множество $1 (0,25;+\infty)$ $2 [1;49)$ $3 \{1\}$ $4 [0;5]$ $5 \emptyset$                                               |
|    |                                                                                                                                                                                                                                                                      |
| 13 | Указать все $a$ , при которых уравнение $\frac{\sqrt{x-3}}{\sqrt{x+1}}$ $\frac{x^2+(1-x)\sqrt{x^2-2x-3}-1}{x^2-(x+3)\sqrt{x^2-2x-3}-9}=a$ имеет хотя бы один корень                                                                                                  |
|    | $\boxed{1} \ (-1; -\frac{1}{3}) \boxed{2} \ (-\infty; -1) \bigcup (-1; +\infty) \boxed{3} \ (-1; -\frac{1}{4}) \boxed{4} \ (-1; +\infty) \boxed{5} \ (1; 3)$                                                                                                         |
|    |                                                                                                                                                                                                                                                                      |
|    | (                                                                                                                                                                                                                                                                    |
| L4 | Все значения $a$ , при которых система уравнений $\begin{cases} y =  x+a  + 2 \\ x = \sqrt{4y - y^2} \end{cases}$ имеет                                                                                                                                              |
|    | решения, образуют множество                                                                                                                                                                                                                                          |
|    |                                                                                                                                                                                                                                                                      |
| 15 | Расстояние между корнями квадратного уравнения с рациональными коэффициентами, одним из корней которого является число $3 \cdot (3+\sqrt{6})^{-1}$ , равно $\boxed{1} \ 3\sqrt{6}$ $\boxed{2} \ 9$ $\boxed{3} \ 3$ $\boxed{4} \ 2\sqrt{6}$ $\boxed{5} \ 4+2\sqrt{3}$ |
|    |                                                                                                                                                                                                                                                                      |
| 16 | Сумма наибольшего и наименьшего значений функции $y=\frac{1}{2}\cos^2 x$ —                                                                                                                                                                                           |
|    | $2\sqrt{\sin^2(\frac{\pi}{2}+x)}-1$ заключена в интервале                                                                                                                                                                                                            |
|    | $(-1;0,5)$ 2 $(-4;-\pi)$ 3 $(1;3)$ 4 $(\pi;4)$ 5 $(2;3)$                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                                      |
| L7 | Наибольшее значение функции $f(x)=(0,2x+1)(0,4-0,1x)(x-2)(x+3)+1,02 \text{ равно}$ 1 -2 2 -1 3 -3 4 2 5 1                                                                                                                                                            |
|    |                                                                                                                                                                                                                                                                      |
|    |                                                                                                                                                                                                                                                                      |

Профи-2014, математика, 1 тур

До кризиса фонд зарплаты учителей составлял 20% общих расходов. Во время кризиса фонд зарплаты уменьшился на 20%, то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют

Вариант 5

zProfi14-Math



Произведение корней уравнения  $x^{\log_7 5} = 25 \cdot 8^{\log_x 7}$  равно

 $\log_{5} 7$ 

 $|2x+a| \leq |x+1|$  является отрезок длины 1.

 $2 \cos^2 \alpha$ 

**3** 36

Сумма всех коэффициентов многочлена  $P(x) = ((1 + \sin \alpha)x - 1)^2 \times$  $\times ((\cos \alpha + 1)x - 1)^2 - (\sin^2 \alpha \cdot x^2 + 1) \cdot (\cos^2 \alpha \cdot x^2 - 1)$ , приведенного к стан-

 $3 2\sin^2 \alpha$ 

4 16

**4** 4

4 1

**1** 49

 $\begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$ 

 $1 \cos^2 \alpha$ 

дартному виду, равна

```
Найдите сумму значений a, при которых решениями неравенства
```

**5** 25

 $\boxed{5}$  -4

 $|\mathbf{5}| \sin^2 \alpha$ 

zProfi14-Math

**1** [1; 3]

[1, 5; 2]

Профи-2014, математика, 1 тур

Сумма целых решений неравенства

**2** 4

Количество различных корней уравнения

**2** 72

 $x \in [1; 2]$  при любых a из множества

на промежутке  $x \in [-6; 5]$  равна

 $(x-4\sqrt[3]{\log_4^2 3})(x-\pi)(3\sqrt[3]{\log_3 4}-x)(x+4) \ge 0$ 

[1,5;3]

Решить неравенство  $4x - 5 > \sqrt{1 + x(x+2)} + \sqrt{-3x^2 + 6x + 24}$ 

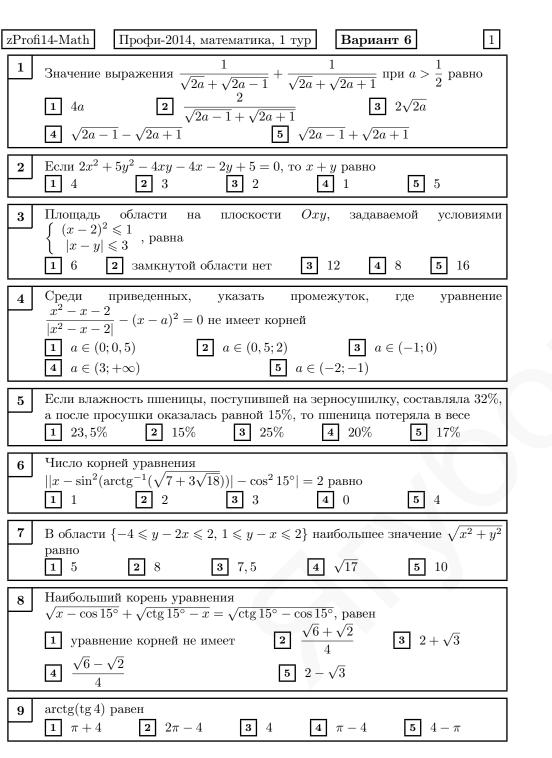
**3** 2

 $\sin \frac{\pi x}{2} \cdot \sqrt{(x+5,5)(40\sin x - \sqrt{80}\cos x - 41)(x-140)} = 0$  равно

**3** 74

Неравенство  $x^2 - (3a-2)x + (a-1)(2a-1) \le 0$  выполняется для всех

[5]  $(-\infty;1]$   $[3;+\infty)$ 


1 (3;4) 2  $\left(\frac{7+\sqrt{33}}{4};4\right)$  3  $\left(\frac{5}{4};2\right)$  4 (-2;4) 5  $\left(\frac{4+\sqrt{33}}{4};4\right)$ 

 $\boxed{4}$  -4

 $[3] (-\infty; 1, 5] \cup [2; +\infty)$ 

Вариант 5

 $\boxed{5}$  -7



| zPr       | rofi14-Math Профи-2014, математика, 1 тур Вариант 6                                                                                                                                                                                                                                                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10        | До кризиса фонд зарплаты учителей составлял $25\%$ общих расходов. Во время кризиса фонд зарплаты уменьшился на $25\%$ , то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют $\boxed{1}$ $\frac{300}{17}\%$ $\boxed{2}$ $20\%$ $\boxed{3}$ $16, (6)\%$ $\boxed{4}$ $25\%$ $\boxed{5}$ $18, 75\%$ |
| <u>гг</u> |                                                                                                                                                                                                                                                                                                                                          |
| 11        | Сумма всех значений $x$ , при которых числа $9^x$ ; $2 \cdot 6^x$ ; $3 \cdot 4^x$ являются последовательными членами арифметической прогрессии, равна $1 \log_{1,5} 3$ $2 \log_{0,(6)} 3$ $3$ таких $x$ нет $4 \log_{1,5} 4,5$ $5$ $0$                                                                                                   |
| 10        | Dec managed was a series busy busy by                                                                                                                                                                                                                                                                                                    |
| 12        | Все значения параметра $a$ , при которых функция $y = \sqrt{(\sqrt{a}-2)x^2 + (\sqrt{a}+3)x + 9}$ определена на всей числовой оси, образуют множество $1  [9;729]  2  (4;+\infty)  3  \{9\}  4  [9;27]  5  [27;81]$                                                                                                                      |
|           |                                                                                                                                                                                                                                                                                                                                          |
| 13        | Указать все $a$ , при которых уравнение $\frac{\sqrt{x-2}}{\sqrt{x+1}}$ $\times$                                                                                                                                                                                                                                                         |
|           | $	imes rac{x^2 + (1-x)\sqrt{x^2 - x - 2} - 1}{x^2 - (x+2)\sqrt{x^2 - x - 2} - 4} = a$ имеет хотя бы один корень                                                                                                                                                                                                                         |
|           | $\boxed{1} (1;3) \boxed{2} (-\infty;-1) \bigcup (-1;+\infty) \boxed{3} (-1;-\frac{1}{4}) \boxed{4} (-1;+\infty) \boxed{5} (-1;-\frac{1}{3})$                                                                                                                                                                                             |
|           |                                                                                                                                                                                                                                                                                                                                          |
| 14        | Все значения $a$ , при которых система уравнений $\left\{ \begin{array}{l} y= x-a -1\\ x=\sqrt{-2y-y^2} \end{array} \right.$ имеет                                                                                                                                                                                                       |
|           | решения, образуют множество $ [1] [0; \sqrt{2}] $ $ [2] [-1; 1] $ $ [3] [-\sqrt{2}; \sqrt{2}] $ $ [4] [0; 3] $ $ [5] [-1; \sqrt{2}] $                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                          |
| 15        | Расстояние между корнями квадратного уравнения с рациональными ко-<br>эффициентами, одним из корней которого является число $2 \cdot (7 + 4\sqrt{3})^{-1}$ ,<br>равно                                                                                                                                                                    |
|           | 1 16 2 $4+2\sqrt{3}$ 3 $16\sqrt{3}$ 4 4 5 $2\sqrt{3}$                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                          |
| 16        | Сумма наибольшего и наименьшего значений функции у =                                                                                                                                                                                                                                                                                     |

 $-2\sqrt{\sin^2(\frac{3}{2}\pi-x)}+\frac{2}{3}\cos^2x+1$  заключена в интервале

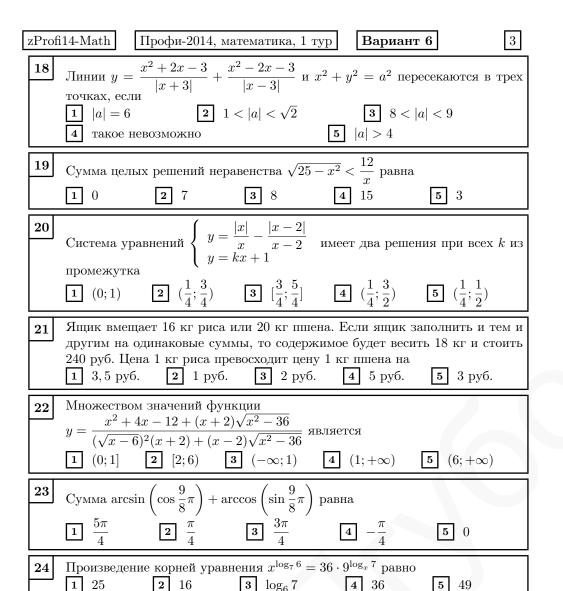
f(x) = (0, 1x + 0, 3)(x - 1)(x - 2)(0, 1x - 0, 6) равно

 $[3] (\pi; 4)$ 

**3** 2

**4** (1; 3)

**2** (2; 3)


Наименьшее значение функции

 $1 (-4; -\pi)$ 

**1** 1

**5** (0; 1)

[5] -2



Найдите сумму значений a, при которых решениями неравенства

Сумма всех коэффициентов многочлена  $P(x) = ((1 - \sin \alpha)x - 1)^2 \times$  $\times ((\cos \alpha - 1)x + 1)^2 - (\cos^2 \alpha \cdot x^2 - 1) \cdot (\sin^2 \alpha \cdot x^2 + 1)$ , приведенного к стан-

 $|\mathbf{4}| 2\cos^2 \alpha$ 

[3] -0.5

3 1

**5** 4

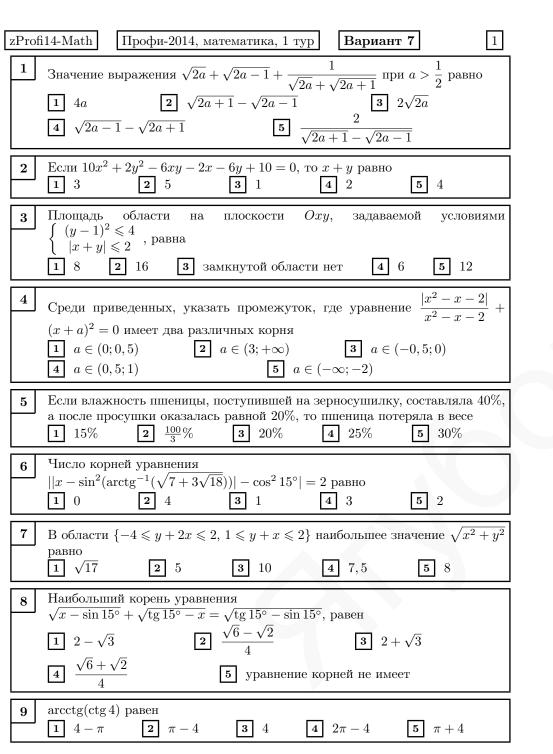
 $|\mathbf{5}| \cos^2 \alpha$ 

 $|2x-a| \leq |x-1|$  является отрезок длины 1.

 $2\sin^2\alpha$ 

**2** 3

дартному виду, равна


 $1 \sin^2 \alpha$ 

```
zProfi14-Math
                     Профи-2014, математика, 1 тур
                                                                    Вариант 6
    Решить неравенство 5x - 6 > \sqrt{1 + 3x(3x + 2)} + \sqrt{-4x^2 + 16x + 20}
     \boxed{1} \ (0;5] \boxed{2} \ \left(\frac{11+\sqrt{7}}{4};5\right] \boxed{3} \ \left(\frac{11+3\sqrt{7}}{4};5\right] \boxed{4} \ (-1;5] \boxed{5} \ \left(\frac{11+2\sqrt{7}}{4};5\right] 
     Сумма целых решений неравенства
     (x-4\sqrt[3]{\log_4 3})(\pi-x)(3\sqrt[3]{\log_3^2 4}-x)(x+4) \le 0
    на промежутке x \in [-6; 5] равна
     \begin{bmatrix} 1 \\ -6 \end{bmatrix}
                                           3 0
                                                            |4| -4
    Количество различных корней уравнения
    \sin \pi x \cdot \sqrt{(x+2,5)(41-40\sin x+\sqrt{80}\cos x)(70-x)}=0 равно
                       2 73
                                          3 71
    1 74
    Неравенство x^2 - 3ax + (a+1)(2a-1) \ge 0 выполняется для всех x \in [3:5]
    при любых а из множества
                                        [2] (-\infty;3] \cup [4;+\infty)
     1 \quad (-\infty; 2] \bigcup [4; +\infty)
     4 [2; 4]
                                           [5] (-\infty; 3] \cup [6; +\infty)
```

**5** −3

**5** 72

**3** [3; 4]



| zPı | rofi14-Math Профи-2014, математика, 1 тур Вариант 7                                                                                                                                                                                                                                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | До кризиса фонд зарплаты учителей составлял $25\%$ общих расходов. Во время кризиса фонд зарплаты уменьшился на $40\%$ , то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют 1 $15\%$ 2 $25\%$ 3 $16,(6)\%$ 4 $20\%$ 5 $\frac{300}{19}\%$                          |
|     |                                                                                                                                                                                                                                                                                                            |
| 11  | Сумма всех значений $x$ , при которых числа $4^x$ ; $3, 5 \cdot 10^x$ ; $10 \cdot 25^x$ являются последовательными членами арифметической прогрессии, равна $\boxed{1}  \lg^{-1} 0, 4  \boxed{2}  \text{таких } x \text{ нет}  \boxed{3}  \lg^{-1} 2, 5  \boxed{4}  \log_{0,4} 2  \boxed{5}  \log_{0,4} 5$ |
|     |                                                                                                                                                                                                                                                                                                            |
| 12  | Все значения параметра $a$ , при которых функция $y = \sqrt{(2\sqrt{a}-4)x^2 + (\sqrt{a}+4)x + 4}$ определена на всей числовой оси образуют множество  1 [8; 128] 2 [8; 64] 3 (4; + $\infty$ ) 4 [16; 400] 5 (4; 16]                                                                                       |
|     |                                                                                                                                                                                                                                                                                                            |
| 13  | Указать все $a$ , при которых уравнение $\frac{\sqrt{x+1}}{\sqrt{x-3}} \times \frac{x^2+(x+3)\sqrt{x^2-2x-3}-9}{x^2-(1-x)\sqrt{x^2-2x-3}-1} = a$ имеет хотя бы один корень $\boxed{1 \ (1;+\infty) \ 2 \ (-1;-\frac{1}{3}) \ 3 \ (-\infty;1) \bigcup (1;+\infty) \ 4 \ (-1;-\frac{1}{4}) \ 5 \ (1;3)}$     |
|     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                      |
| 14  | Все значения $a$ , при которых система уравнений $\begin{cases} y= x-a +1\\ x=\sqrt{2y-y^2} \end{cases}$ имеет решения, образуют множество                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                                                                                                                            |
| 15  | Расстояние между корнями квадратного уравнения с рациональными коэффициентами, одним из корней которого является число $(\sqrt{5}+2)^{-1}$ , равно $\boxed{1}$ $4+2\sqrt{5}$ $\boxed{2}$ $4$ $\boxed{3}$ $2\sqrt{5}$ $\boxed{4}$ $2$ $\boxed{5}$ $4\sqrt{5}$                                               |
|     |                                                                                                                                                                                                                                                                                                            |
| 16  | Сумма наибольшего и наименьшего значений функции у =                                                                                                                                                                                                                                                       |

 $2\sqrt{\sin^2(\frac{3}{2}\pi+x)}-\frac{1}{2}\cos^2x+1$  заключена в интервале

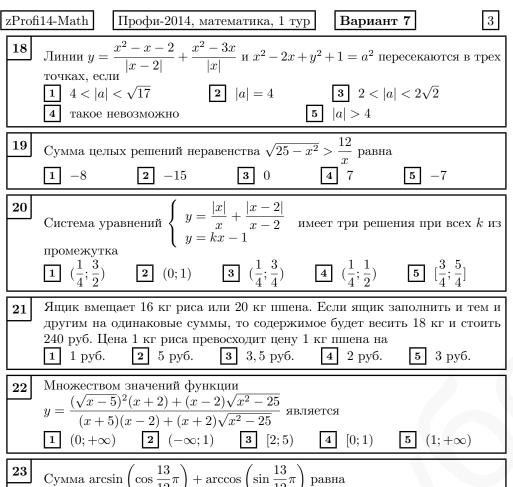
f(x) = (x+3)(0,1x-0,1)(0,1x-0,2)(6-x) равно

**3** (1; 3)

[3] -1

**4** (2; 3)

|4| -3


1 (-1;0,5) 2  $(\pi;4)$ 

1

Наибольшее значение функции

**2** 2

 $[5] (-4; -\pi)$ 

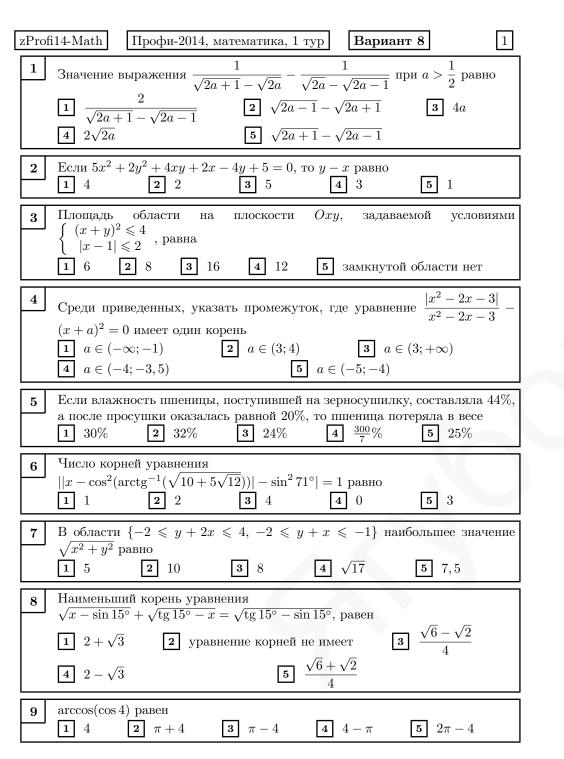


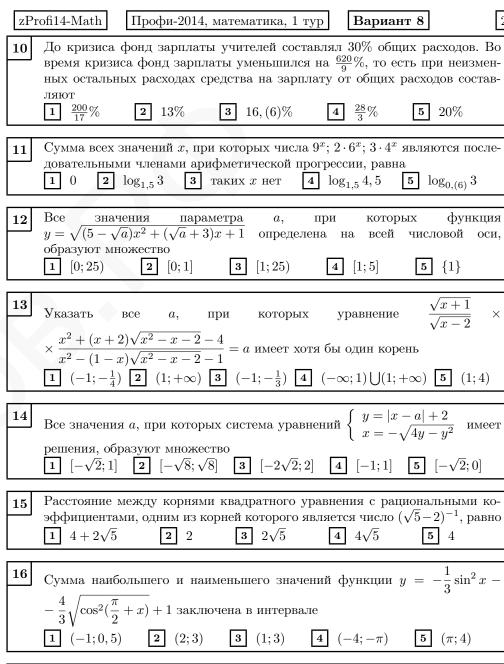
```
Сумма \arcsin\left(\cos\frac{13}{12}\pi\right) + \arccos\left(\sin\frac{13}{12}\pi\right) равна
                        [3] \frac{5}{6}\pi [4] \frac{2}{3}\pi [5] -\frac{5\pi}{6}
\frac{1}{6}
Произведение корней уравнения x^{\log_6 8} = 64 \cdot 7^{\log_x 6} равно
                2 36
1 25
                                                    4 16
                                                                    5 49
                                \log_8 6
Найдите сумму значений a, при которых решениями неравенства
|2x-a| \leq |x+1| является отрезок длины 1.
                                                                   \boxed{5} -4
                                                | \mathbf{4} | -0,5
1 3
Сумма всех коэффициентов многочлена P(x) = ((1 + \cos \alpha)x - 1)^2 \times
```

```
\times ((\sin \alpha + 1)x - 1)^2 - (\cos^2 \alpha \cdot x^2 + 1) \cdot (\sin^2 \alpha \cdot x^2 - 1), приведенного к стан-
дартному виду, равна
1 \quad 2\sin^2\alpha
                          |\mathbf{2}| \sin^2 \alpha
                                                   3 \quad 2\cos^2\alpha
                                                                              |\mathbf{4}| \cos^2 \alpha
                                                                                                       5 1
```

```
Решить неравенство 4x - 5 > \sqrt{4 + 3x(3x - 4)} + \sqrt{-2x^2 + 14x - 20}
\boxed{1} \left(\frac{10-\sqrt{13}}{3};5\right] \boxed{2} \ (4;5) \boxed{3} \left(\frac{10+\sqrt{13}}{3};5\right) \boxed{4} \left(\frac{5+\sqrt{13}}{2};5\right) \boxed{5} \ (2;5)
```

Вариант 7


Сумма целых решений неравенства  $(x-5\sqrt[3]{\log_5 2})(\pi+x)(2\sqrt[3]{\log_2 5}-x)(x-4) \ge 0$ на промежутке  $x \in [-6; 5]$  равна 4 7 **5** −6


Профи-2014, математика, 1 тур

zProfi14-Math

Количество различных корней уравнения  $\cos\left(\frac{\pi x}{2} - \frac{\pi}{2}\right) \cdot \sqrt{(x+140)(\sqrt{99}\sin x - 49\cos x - 51)(x-4,5)} = 0$  pabo **3** 74 **4** 71  $\mathbf{2} \quad \infty$ **5** 72

Неравенство  $x^2 + (2-3a)x + (1-a)(1-2a) \ge 0$  выполняется для всех  $x \in [1;3]$  при любых a из множества  $\boxed{\mathbf{3}} (-\infty;1] \bigcup [4;+\infty)$ 1 [2; 4]  $[2] (-\infty; 0] [1] [2; +\infty)$  $(-\infty;1] [\ \ \ \ \ ][2;+\infty)$ 

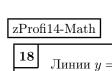




Наименьшее значение функции

 $\begin{bmatrix} \mathbf{1} \end{bmatrix}$  -3

f(x) = (0, 1x - 0, 2)(x + 3)(x - 4)(0, 2x + 1) - 2,02 равно


 $\boxed{\mathbf{3}}$  -1

**5** 20%

**|5|** {1}

 $\boxed{5}$  -2

функция



Профи-2014, математика, 1 тур

Вариант 8

zProfi14-Math

3

Профи-2014, математика, 1 тур

Вариант 8

Линии  $y=\frac{x^2-x-2}{|x+1|}+\frac{x^2-3x}{|x-3|}$  и  $x^2-2x+y^2=\overline{a^2-1}$  пересекаются в трех

 $\boxed{1} \quad 2 < |a| < 2\sqrt{2}$ 

|a| > 4

|a| = 4

4 такое невозможно

 $| \mathbf{5} | 4 < |a| < \sqrt{17}$ 

Сумма целых решений неравенства  $\sqrt{25-x^2}\geqslant \frac{12}{\pi}$  равна

**1** −15

|4| -8

**5** 0

**20** 

Система уравнений  $\left\{ \begin{array}{l} y=-\frac{|x|}{x}+\frac{|x-2|}{x-2} \\ y=kx-1 \end{array} \right.$  имеет два решения при всех k

из промежутка

 $\boxed{ 1 \ (-\frac{3}{4}; -\frac{1}{4}) } \ \boxed{ 2 \ (-5; -2) } \ \boxed{ 3 \ (-\frac{1}{4}; 0) } \ \boxed{ 4 \ (-1; 0) } \ \boxed{ 5 \ (-0, 5; 0) }$ 

Ящик вмещает 12 кг риса или 16 кг пшена. Если ящик заполнить и тем и другим на одинаковые суммы, то содержимое будет весить 15 кг и стоить 90 руб. Суммарная стоимость 1 кг риса и 1 кг пшена равна

1 18,75 py6. 2 17 py6. 3 14 py6. 4 12 py6. 5 15 py6.

Множеством значений функции  $y = \frac{(x+6)(x-2) + (x+2)\sqrt{x^2 - 36}}{(\sqrt{x-6})^2(x+2) + (x-2)\sqrt{x^2 - 36}}$  является

1 [2; 6)

**2**  $(6; +\infty)$  **3**  $(1; +\infty)$  **4**  $(-\infty; 1)$ 

**5** (0; 1]

Cymma  $\arcsin\left(\cos\frac{23}{24}\pi\right) + \arccos\left(\sin\frac{23}{24}\pi\right)$  равна

 $\boxed{1} - \frac{3}{8}\pi$   $\boxed{2} \frac{13}{24}\pi$   $\boxed{3} - \frac{\pi}{12}$ 

**4** 0

Произведение корней уравнения  $x^{\log_4 7} = 49 \cdot 8^{\log_x 4}$  равно

**1** 16

**2** 25

**3** 49

 $4 \log_7 4$ 

**5** 36

Найдите сумму значений a, при которых решениями неравенства  $|2x + a| \le |x - 1|$  является отрезок длины 1.

[2] -0.5

**5** −3

Сумма всех коэффициентов многочлена  $P(x) = ((1-\cos\alpha)x-1)^2 \times$  $\times ((\sin \alpha - 1)x + 1)^2 - (\sin^2 \alpha \cdot x^2 - 1) \cdot (\cos^2 \alpha \cdot x^2 + 1)$ , приведенного к стандартному виду, равна

 $1 \sin^2 \alpha$ 

 $2\sin^2\alpha$ 

 $|\mathbf{3}| \cos^2 \alpha$ 

 $4 \mid 2\cos^2\alpha$ 

Решить неравенство  $3x + 4 > \sqrt{9 + 4x(x+3)} + \sqrt{-2x^2 - 8x + 10}$ 

 $\boxed{1} \left(\frac{2\sqrt{13}-5}{3};1\right] \boxed{2} \left(-5;1\right] \boxed{3} \left(\frac{\sqrt{13}-5}{3};1\right] \boxed{4} \left(-\frac{4}{3};1\right] \boxed{5} \left(-\frac{1}{3};1\right]$ 

Сумма целых решений неравенства  $(x-5\sqrt[3]{\log_5 2})(2+x)(2\sqrt[3]{\log_2^2 5}-x)(x-\pi) \le 0$ на промежутке  $x \in [-4; 6]$  равна

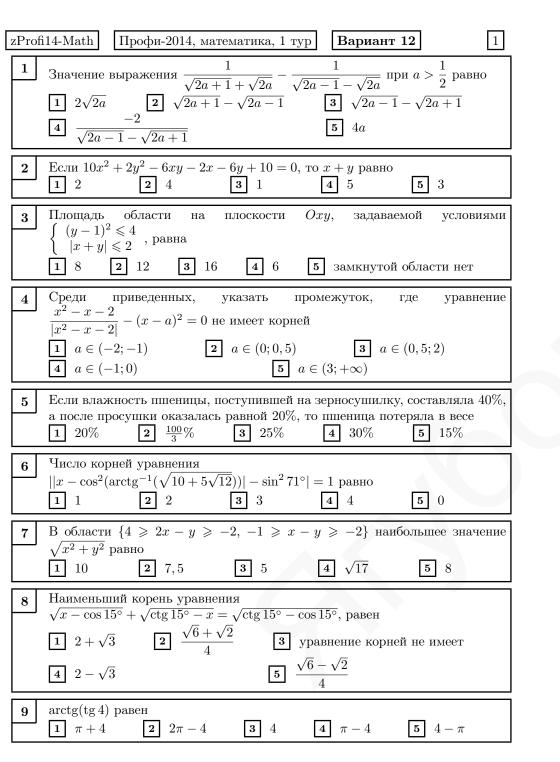
**2** 6

**4** 9

**5** 3

Количество различных корней уравнения

 $\cos \frac{\pi x}{2} \cdot \sqrt{(x+4,5)(49\cos x - \sqrt{99}\sin x - 51)(x-211,5)} = 0$  равно


**2** 73

3  $\infty$ 

**5** 74

Неравенство  $x^2 - 3ax + (a-1)(2a+1) ≤ 0$  выполняется для всех x ∈ [3:5]при любых а из множества

 $1 \quad (-\infty; 2] \bigcup [4; +\infty)$   $2 \quad [3; 6]$   $3 \quad [2; 6]$   $4 \quad [2; 4]$   $5 \quad (-\infty; 3] \bigcup [6; +\infty)$ 



| zPı | rofi14-Math Профи-2014, математика, 1 тур Вариант 12                                                                                                                                                                                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | До кризиса фонд зарплаты учителей составлял $25\%$ общих расходов. Во время кризиса фонд зарплаты уменьшился на $25\%$ , то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют 1 $16,(6)\%$ 2 $20\%$ 3 $25\%$ 4 $\frac{300}{17}\%$ 5 $18,75\%$ |
|     |                                                                                                                                                                                                                                                                                      |
| 11  | Сумма всех значений $x$ , при которых числа $9^x$ ; $2 \cdot 6^x$ ; $3 \cdot 4^x$ являются последовательными членами арифметической прогрессии, равна $1 \log_{1,5} 4, 5$ $2 0$ $3$ таких $x$ нет $4 \log_{0,(6)} 3$ $5 \log_{1,5} 3$                                                |
|     |                                                                                                                                                                                                                                                                                      |
| 12  | Все значения параметра $a$ , при которых функция $y = \sqrt{(3-\sqrt{a})x^2 + (\sqrt{a}+4)x + 9}$ определена на всей числовой оси, образуют множество                                                                                                                                |
|     | 1     [0;1]       2     [0;9)       3     [0;2]       4     [4]       5     [0;4]                                                                                                                                                                                                    |
|     |                                                                                                                                                                                                                                                                                      |
| 13  | Указать все $a$ , при которых уравнение $\frac{\sqrt{x+1}}{\sqrt{x-3}}$ $\times$                                                                                                                                                                                                     |
|     | $	imes rac{x^2 + (x+3)\sqrt{x^2 - 2x - 3} - 9}{x^2 - (1-x)\sqrt{x^2 - 2x - 3} - 1} = a$ имеет хотя бы один корень                                                                                                                                                                   |
|     | $\boxed{1} \ (-1; -\frac{1}{4}) \ \boxed{2} \ (-\infty; 1) \bigcup (1; +\infty) \ \boxed{3} \ (-1; -\frac{1}{3}) \ \boxed{4} \ (1; 3) \ \boxed{5} \ (1; +\infty)$                                                                                                                    |
|     |                                                                                                                                                                                                                                                                                      |
| 14  | Все значения $a$ , при которых система уравнений $\left\{ \begin{array}{ll} y= x-a -1\\ x=\sqrt{-2y-y^2} \end{array} \right.$ имеет                                                                                                                                                  |
|     | решения, образуют множество $ \boxed{ 1 } [0;3] \qquad \boxed{ 2 } [0;\sqrt{2}] \qquad \boxed{ 3 } [-1;1] \qquad \boxed{ 4 } [-\sqrt{2};\sqrt{2}] \qquad \boxed{ 5 } [-1;\sqrt{2}] $                                                                                                 |
|     |                                                                                                                                                                                                                                                                                      |
| 15  | Расстояние между корнями квадратного уравнения с рациональными ко-<br>эффициентами, одним из корней которого является число $2 \cdot (\sqrt{5} + 2)^{-1}$ ,<br>равно                                                                                                                 |
|     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                      |
| 16  | Сумма наибольшего и наименьшего значений функции $y =$                                                                                                                                                                                                                               |

 $-2\sqrt{\sin^2(\frac{3}{2}\pi-x)}+\frac{2}{3}\cos^2x+1$  заключена в интервале

f(x) = (x+3)(0,1x-0,1)(0,1x-0,2)(6-x) равно

 $[3] (\pi; 4)$ 

[3] -2

**4** (0; 1)

4 2

**2** (1; 3)

Наибольшее значение функции

 $1 (-4; -\pi)$ 

**1** 1

**5** (2; 3)

 $\boxed{5}$  -1

 $\times ((\sin \alpha + 1)x - 1)^2 - (\cos^2 \alpha \cdot x^2 + 1) \cdot (\sin^2 \alpha \cdot x^2 - 1)$ , приведенного к стан-

 $3 \quad 2\cos^2\alpha$ 

 $4 2\sin^2\alpha$ 

 $|2x-a| \leq |x+1|$  является отрезок длины 1.

[2] -4

**2** 1

дартному виду, равна

 $1 \cos^2 \alpha$ 

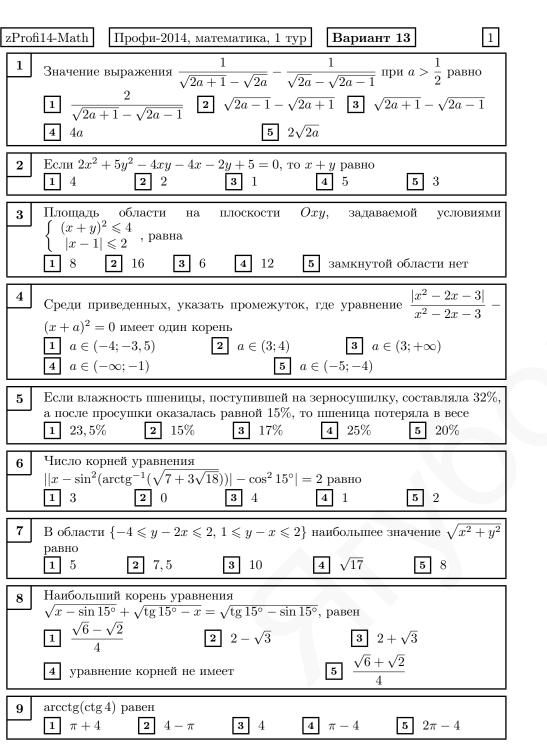
Найдите сумму значений a, при которых решениями неравенства Сумма всех коэффициентов многочлена  $P(x) = ((1 + \cos \alpha)x - 1)^2 \times$ 

[5] -0.5

 $|\mathbf{5}| \sin^2 \alpha$ 

```
zProfi14-Math
              Профи-2014, математика, 1 тур
                                             Вариант 12
```

Pemuть неравенство 
$$4x - 5 > \sqrt{4 + 3x(3x - 4)} + \sqrt{-2x^2 + 14x - 20}$$


1 (4;5] 2 (2;5] 3  $\left(\frac{5 + \sqrt{13}}{2};5\right]$  4  $\left(\frac{10 - \sqrt{13}}{3};5\right]$  5  $\left(\frac{10 + \sqrt{13}}{3};5\right]$ 

Сумма целых решений неравенства 
$$\left(x-4\sqrt[3]{\log_4 3}\right)(\pi-x)\left(3\sqrt[3]{\log_3^2 4}-x\right)(x+4)\leqslant 0$$
 на промежутке  $x\in[-6;5]$  равна 
$$\boxed{1} \ 0 \qquad \boxed{2} \ -4 \qquad \boxed{3} \ -3 \qquad \boxed{4} \ -2 \qquad \boxed{5} \ -6$$

Количество различных корней уравнения 
$$\sin \pi x \cdot \sqrt{(x+2,5)(41-40\sin x+\sqrt{80}\cos x)(70-x)}=0 \text{ равно}$$
1 72 2 74 3  $\infty$  4 73 5 71

30 Неравенство 
$$x^2 + (2-3a)x + (1-a)(1-2a) \geqslant 0$$
 выполняется для всех  $x \in [1;3]$  при любых  $a$  из множества

1  $(-\infty;0] \cup [2;+\infty)$ 
2  $(-\infty;1] \cup [2;+\infty)$ 
3  $[2;4]$ 
4  $[1;4]$ 
5  $(-\infty;1] \cup [4;+\infty)$ 



```
zProfi14-Math
                Профи-2014, математика, 1 тур
                                                    Вариант 13
   До кризиса фонд зарплаты учителей составлял 20% общих расходов. Во
    время кризиса фонд зарплаты уменьшился на 20%, то есть при неизменных
    остальных расходах средства на зарплату от общих расходов составляют
                     2 15%
    1 16, (6)%
                                   3 16%
    Сумма всех значений x, при которых числа 4^x; 3, 5 \cdot 10^x; 10 \cdot 25^x являются
    последовательными членами арифметической прогрессии, равна
    1 таких x нет 2 \log_{0.4} 5 3 \log_{0.4} 2 4 \lg^{-1} 0, 4 5 \lg^{-1} 2, 5
    Bce
            значения
                          параметра
                                               при
                                                        которых
   y = \sqrt{(2\sqrt{a} - 4)x^2 + (\sqrt{a} + 4)x + 4} определена на всей числовой оси,
    образуют множество
    1 [16; 400]
                   2 (4; +\infty)
                                   3 [8; 64]
                                                 4 (4:16)
                                                              5 [8; 128]
                           при
   Указать
                все
                                      которых
                                                   уравнение
  	imes rac{x^2 + (x+2)\sqrt{x^2 - x - 2} - 4}{x^2 - (1-x)\sqrt{x^2 - x - 2} - 1} = a имеет хотя бы один корень
   1 (1;4) 2 (-1;-\frac{1}{3}) 3 (1;+\infty) 4 (-1;-\frac{1}{4}) 5 (-\infty;1)\bigcup(1;+\infty)
   Все значения a, при которых система уравнений \left\{ \begin{array}{ll} y=|x-a|+2\\ x=-\sqrt{4y-u^2} \end{array} \right. имеет
    решения, образуют множество
    Расстояние между корнями квадратного уравнения с рациональными ко-
   эффициентами, одним из корней которого является число 2 \cdot (7 - 4\sqrt{3})^{-1}
    равно
    1 16\sqrt{3}
                   2 16
                                                      5 \quad 4 + 2\sqrt{3}
   Сумма наибольшего и наименьшего значений функции у
```

 $-3\sqrt{\cos^2(\frac{\pi}{2}+x)}+\frac{1}{2}\sin^2x+2$  заключена в интервале

f(x) = (0, 1x + 0, 3)(x - 1)(x - 2)(0, 1x - 0, 6) равно

 $[3] (-4; -\pi)$   $[4] (\pi; 4)$ 

(2;3)

Наименьшее значение функции

1 -2

**5** | 20%

[5] (-1;0,5)

3 zProfi14-Math Профи-2014, математика, 1 тур Вариант 13 Линии  $y=\frac{x^2+2x-3}{|x-1|}+\frac{x^2-2x-3}{|x+1|}$  и  $x^2+y^2=a^2$  пересекаются в трех |a| = 6 $|a| < |a| < \sqrt{2}$ з такое невозможно |a| > 4 $| \mathbf{5} | 8 < |a| < 9$ Сумма целых решений неравенства  $\sqrt{25-x^2} \leqslant \frac{12}{x}$  равна 1 7 **2** 15 **3** 0 4 3 | 5 | -7 |**20** Система уравнений  $\begin{cases} y = -\frac{|x|}{x} + \frac{|x-2|}{x-2} \end{cases}$  имеет два решения при всех kиз промежутка  $\boxed{ 1 \ (-\frac{3}{4}; -\frac{1}{4}) } \ \boxed{ 2 \ (-0,5;0) } \ \boxed{ 3 \ (-\frac{1}{4};0) } \ \boxed{ 4 \ (-1;0) } \ \boxed{ 5 \ (-5;-2) }$ Ящик вмещает 12 кг риса или 16 кг пшена. Если ящик заполнить и тем и другим на одинаковые суммы, то содержимое будет весить 15 кг и стоить 90 руб. Суммарная стоимость 1 кг риса и 1 кг пшена равна 1 18,75 py6. 2 14 py6. 3 15 py6. 4 12 py6. 5 17 py6. Множеством значений функции  $y = \frac{(\sqrt{x-5})^2(x+2) + (x-2)\sqrt{x^2-25}}{(x+5)(x-2) + (x+2)\sqrt{x^2-25}}$  является  $[1 \ [2;5) \ [2] \ [0;1)$ [5]  $(0;+\infty)$ Сумма  $\arcsin\left(\cos\frac{13}{12}\pi\right) + \arccos\left(\sin\frac{13}{12}\pi\right)$  равна  $\frac{5}{6}\pi$   $\frac{5}{6}\pi$   $\frac{2}{3}\pi$ Произведение корней уравнения  $x^{\log_7 6} = 36 \cdot 9^{\log_x 7}$  равно  $\log_6 7$ **5** 36 **3** 16

Найдите сумму значений a, при которых решениями неравенства

Сумма всех коэффициентов многочлена  $P(x) = ((1 - \cos \alpha)x - 1)^2 \times ((\sin \alpha - 1)x + 1)^2 - (\sin^2 \alpha \cdot x^2 - 1) \cdot (\cos^2 \alpha \cdot x^2 + 1)$ , приведенного к стан-

 $3 2\sin^2 \alpha$ 

4 1

[5] -0.5

 $|\mathbf{5}| 2\cos^2\alpha$ 

 $|2x + a| \le |x + 1|$  является отрезок длины 1.

 $\cos^2 \alpha$ 

дартному виду, равна

 $1 \sin^2 \alpha$ 

 zProfi14-Math
 Профи-2014, математика, 1 тур
 Вариант 13

 27
 Решить неравенство  $4x - 5 > \sqrt{1 + x(x+2)} + \sqrt{-3x^2 + 6x + 24}$  

 1  $\left(\frac{5}{4}; 2\right]$  2  $\left(\frac{4 + \sqrt{33}}{4}; 4\right]$  3  $\left(-2; 4\right]$  4  $\left(3; 4\right]$  5  $\left(\frac{7 + \sqrt{33}}{4}; 4\right]$  

 28
 Сумма целых решений неравенства  $\left(x - 4\sqrt[3]{\log_4^2 3}\right)(x - \pi)\left(3\sqrt[3]{\log_3^4} - x\right)(x + 4) \geqslant 0$  на промежутке  $x \in [-6; 5]$  равна

 1 2
 2 -3
 3 -7
 4 4
 5 -4

 29
 Количество различных корней уравнения

| 29 | Количество различных корней уравнения  $\sin\frac{\pi x}{2}\cdot\sqrt{(x+5,5)(40\sin x-\sqrt{80}\cos x-41)(x-140)}=0 \text{ равно}$ | 1 71 | 2 72 | 3 \infty | 4 73 | 5 74

Неравенство  $x^2 - 3ax + (a-1)(2a+1) \le 0$  выполняется для всех  $x \in [3;5]$  при любых a из множества

1  $(-\infty; 2] \bigcup [4; +\infty)$  2 [2;6] 3  $(-\infty; 3] \bigcup [6; +\infty)$  4 [3;6] 5 [2;4]

| zProf | i14-Math Профи-2014, математика, 1 тур Вариант 14                                                                                                                                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Значение выражения $\frac{1}{\sqrt{2a}-\sqrt{2a-1}}+\sqrt{2a+1}-\sqrt{2a}$ при $a>\frac{1}{2}$ равно $\boxed{1}$ $2\sqrt{2a}$ $\boxed{2}$ $\sqrt{2a+1}-\sqrt{2a-1}$ $\boxed{3}$ $4a$ $\boxed{4}$ $\sqrt{2a-1}-\sqrt{2a+1}$ $\boxed{5}$ $\frac{-2}{\sqrt{2a-1}-\sqrt{2a+1}}$ |
| 2     | Если $5x^2 + 2y^2 + 4xy + 2x - 4y + 5 = 0$ , то $x + y$ равно  1 1 2 2 3 4 4 3 5 5                                                                                                                                                                                          |
| 3     | Площадь области на плоскости $Oxy$ , задаваемой условиями $\begin{cases} (x-y)^2 \leqslant 9 \\  x-2  \leqslant 1 \end{cases}$ , равна $\begin{bmatrix} 1 & 6 & 2 & 8 & 3 & 12 & 4 & 16 & 5 \end{bmatrix}$ замкнутой области нет                                            |
| 4     | Среди приведенных, указать промежуток, где уравнение $\frac{ x^2-2x-3 }{x^2-2x-3}+$ $(x-a)^2=0$ имеет два различных корня $\boxed{1} \ a\in (-1;3)$ $\boxed{2} \ a\in (4;+\infty)$ $\boxed{3} \ a\in (-1;1)$ $\boxed{4} \ a\in (0;2)$                                       |
| 5     | Если влажность пшеницы, поступившей на зерносушилку, составляла 32%, а после просушки оказалась равной 20%, то пшеница потеряла в весе  1 12% 2 15% 3 16% 4 300/17% 5 26%                                                                                                   |
| 6     | Число корней уравнения $  x-\sin^2(\arctan(\sqrt{7+3\sqrt{18}})) -\cos^2 15^\circ =2 \text{ равно}$ 1 0 2 1 3 4 4 3 5 2                                                                                                                                                     |
| 7     | В области $\{-2\leqslant y+2x\leqslant 4,\ -2\leqslant y+x\leqslant -1\}$ наибольшее значение $\sqrt{x^2+y^2}$ равно 1 7,5 2 8 3 $\sqrt{17}$ 4 5 5 10                                                                                                                       |
| 8     | Наименьший корень уравнения $\sqrt{x-\sin 15^\circ} + \sqrt{\tan 15^\circ} - x = \sqrt{\tan 15^\circ} - \sin 15^\circ$ , равен  1 $2+\sqrt{3}$ 2 $\frac{\sqrt{6}+\sqrt{2}}{4}$ 3 уравнение корней не имеет  4 $2-\sqrt{3}$ 5 $\frac{\sqrt{6}-\sqrt{2}}{4}$                  |
| 9     | arccos(cos 4) равен                                                                                                                                                                                                                                                         |

| zPı | rofi14-Math Профи-2014, математика, 1 тур Вариант 14                                                                                                                                                                                                                                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | До кризиса фонд зарплаты учителей составлял 30% общих расходов. Во время кризиса фонд зарплаты уменьшился на $\frac{620}{9}\%$ , то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют  1 13% 2 20% 3 $\frac{200}{17}\%$ 4 $\frac{28}{3}\%$ 5 16, (6)% |
| 11  | Сумма всех значений $x$ , при которых числа $9^x$ ; $2 \cdot 6^x$ ; $3 \cdot 4^x$ являются после-                                                                                                                                                                                            |
| 11  | довательными членами арифметической прогрессии, равна $1$ таких $x$ нет $2$ $\log_{1,5} 3$ $3$ $\log_{0,(6)} 3$ $4$ $\log_{1,5} 4,5$ $5$ $0$                                                                                                                                                 |
| 12  | Все значения параметра а. при которых функция                                                                                                                                                                                                                                                |
|     | Все значения параметра $a$ , при которых функция $y = \sqrt{(2\sqrt{a}-1)x^2 + (\sqrt{a}+1)x + 0,75}$ определена на всей числовой оси,                                                                                                                                                       |
|     | образуют множество                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                                                                                              |
| 13  | Указать все $a$ , при которых уравнение $\frac{\sqrt{x-2}}{\sqrt{x+1}}$ $\times$                                                                                                                                                                                                             |
|     | $\times \frac{x^2 + (1-x)\sqrt{x^2 - x - 2} - 1}{x^2 - (x+2)\sqrt{x^2 - x - 2} - 4} = a$ имеет хотя бы один корень                                                                                                                                                                           |
|     | $x^{2} - (x+2)\sqrt{x^{2} - x - 2} - 4$ $\boxed{1} (-1; -\frac{1}{3}) \boxed{2} (-\infty; -1) \bigcup (-1; +\infty) \boxed{3} (-1; +\infty) \boxed{4} (-1; -\frac{1}{4}) \boxed{5} (1; 3)$                                                                                                   |
| 14  | Все значения $a$ , при которых система уравнений $\left\{ \begin{array}{ll} y=- x-a +1 \\ x=-\sqrt{2y-y^2} \end{array} \right.$ имеет                                                                                                                                                        |
|     | решения, образуют множество $ [1] [-\sqrt{2}; \sqrt{2}] $ $ [2] [-1; 1] $ $ [3] [-\sqrt{8}; \sqrt{8}] $ $ [4] [-\sqrt{2}; 1] $ $ [5] [-\sqrt{2}; 0] $                                                                                                                                        |
| 15  | Расстояние между корнями квадратного уравнения с рациональными ко-                                                                                                                                                                                                                           |
| 1   | эффициентами, одним из корней которого является число $2\cdot(\sqrt{5}-2)^{-1},$                                                                                                                                                                                                             |
|     | равно $\boxed{1} \ 4\sqrt{5}$ $\boxed{2} \ 8$ $\boxed{3} \ 2\sqrt{5}$ $\boxed{4} \ 4$ $\boxed{5} \ 4+2\sqrt{5}$                                                                                                                                                                              |
| 10  | 1                                                                                                                                                                                                                                                                                            |
| 16  | Сумма наибольшего и наименьшего значений функции $y=\frac{1}{3}$ ·                                                                                                                                                                                                                           |
|     | $\sqrt{\sin^2(\frac{3}{2}\pi+x)}+2\cos^2x-2$ заключена в интервале                                                                                                                                                                                                                           |

**2** (1; 3)

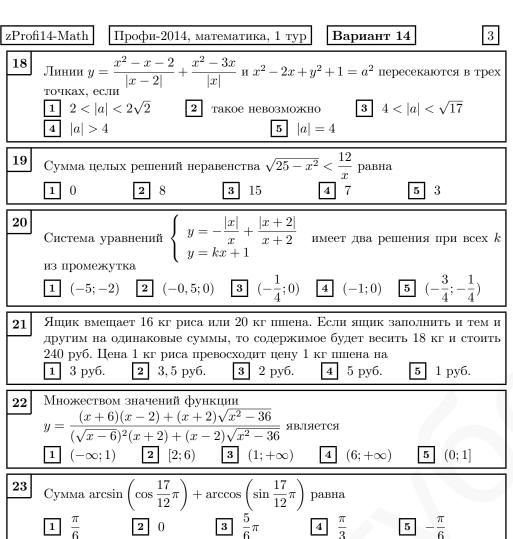
f(x) = (0, 2x + 1)(0, 4 - 0, 1x)(x - 2)(x + 3) + 1,02 равно

Наибольшее значение функции

 $1 (-4; -\pi)$ 

**1** 2

[3] (-2;0)


| 3 | -3 |

**4**  $(\pi; 4)$ 

 $\boxed{4}$  -1

[5] (0;1)

**5** 1



Произведение корней уравнения  $x^{\log_7 5} = 25 \cdot 8^{\log_x 7}$  равно

**3** 16

[3] -0.5

Сумма всех коэффициентов многочлена  $P(x) = ((1 - \sin \alpha)x - 1)^2 \times$  $\times ((\cos \alpha - 1)x + 1)^2 - (\cos^2 \alpha \cdot x^2 - 1) \cdot (\sin^2 \alpha \cdot x^2 + 1)$ , приведенного к стан-

 $3 \sin^2 \alpha$ 

4 25

4 1

**2** 36

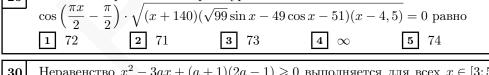
дартному виду, равна

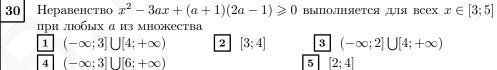
 $1 \cos^2 \alpha$ 

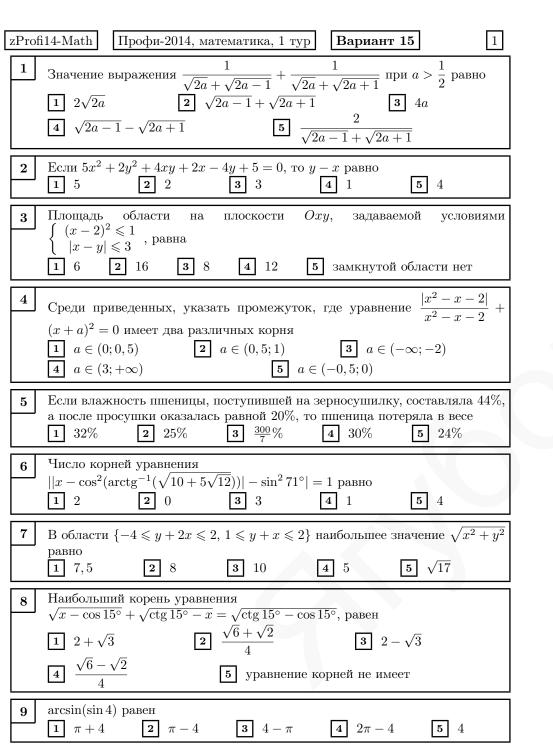
 $|2x + a| \le |x - 1|$  является отрезок длины 1.

 $2\sin^2\alpha$ 

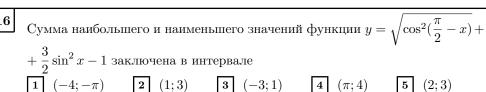
**1** 49


```
Найдите сумму значений a, при которых решениями неравенства
```


 $\log_5 7$ 


 $\boxed{5}$  -4

 $|\mathbf{5}| 2\cos^2\alpha$ 


```
zProfi14-Math
                      Профи-2014, математика, 1 тур
                                                                       Вариант 14
    Решить неравенство 5x - 6 > \sqrt{1 + 3x(3x + 2)} + \sqrt{-4x^2 + 16x + 20}
     \boxed{ 1 \ \left( \frac{11+\sqrt{7}}{4}; 5 \right] \boxed{ 2 \ \left( \frac{11+3\sqrt{7}}{4}; 5 \right] \boxed{ 3 \ } (-1;5] \boxed{ 4 \ } \left( \frac{11+2\sqrt{7}}{4}; 5 \right] \boxed{ 5 \ } (0;5] } 
     Сумма целых решений неравенства
      (x-5\sqrt[3]{\log_5 2})(\pi+x)(2\sqrt[3]{\log_2 5}-x)(x-4) \ge 0
     на промежутке x \in [-6; 5] равна
                                                                 4 −6
                                                                                       5 4
     Количество различных корней уравнения
```







| zPı | гоfi14-Math Профи-2014, математика, 1 тур Вариант 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | До кризиса фонд зарплаты учителей составлял $25\%$ общих расходов. Во время кризиса фонд зарплаты уменьшился на $40\%$ , то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют 1 $15\%$ 2 $25\%$ 3 $20\%$ 4 $16,(6)\%$ 5 $\frac{300}{19}\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11  | Сумма всех значений $x$ , при которых числа $4^x$ ; $3, 5 \cdot 10^x$ ; $10 \cdot 25^x$ являются последовательными членами арифметической прогрессии, равна $\boxed{1} \log_{0,4} 2 \boxed{2} \lg^{-1} 2, 5 \boxed{3}$ таких $x$ нет $\boxed{4} \lg^{-1} 0, 4 \boxed{5} \log_{0,4} 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12  | Все значения параметра $a$ , при которых функция $y=\sqrt{(\sqrt{a}-2)x^2+(\sqrt{a}+3)x+9}$ определена на всей числовой оси, образуют множество $\boxed{1} \ [9;27] \ \boxed{2} \ (4;+\infty) \ \boxed{3} \ [9;729] \ \boxed{4} \ \{9\} \ \boxed{5} \ [27;81]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13  | Указать все $a$ , при которых уравнение $\frac{\sqrt{x-3}}{\sqrt{x+1}}$ $\frac{x^2+(1-x)\sqrt{x^2-2x-3}-1}{x^2-(x+3)\sqrt{x^2-2x-3}-9}=a$ имеет хотя бы один корень                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | $\boxed{1} (-\infty; -1) \bigcup (-1; +\infty) \boxed{2} (1; 3) \boxed{3} (-1; +\infty) \boxed{4} (-1; -\frac{1}{3}) \boxed{5} (-1; -\frac{1}{4})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14  | Все значения $a$ , при которых система уравнений $\left\{ \begin{array}{ll} y=- x-a -1\\ x=-\sqrt{-2y-y^2} \end{array} \right.$ имеет решения, образуют множество $\left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Decomposition way by varying the theory of a proposition of a power of the proposition of |
| 15  | Расстояние между корнями квадратного уравнения с рациональными коэффициентами, одним из корней которого является число $(\sqrt{5}+2)^{-1}$ , равно 1 $4\sqrt{5}$ 2 4 3 $4+2\sqrt{5}$ 4 2 5 $2\sqrt{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| 17 | Наименьше        | е значение фун    | кции             |             |     |
|----|------------------|-------------------|------------------|-------------|-----|
|    | f(x) = (0, 1x)   | (x-0,2)(x+3)(x+3) | (x-4)(0,2x+1)    | -2,02 равно |     |
|    | $\boxed{1}$ $-2$ | $\boxed{2}$ $-1$  | $\boxed{3}$ $-3$ | <b>4</b> 2  | 5 1 |

zProfi14-Math 3 Профи-2014, математика, 1 тур Вариант 15 Линии  $y = \frac{x^2 + x - 2}{|x - 1|} + \frac{x^2 - x - 2}{|x + 1|}$  и  $x^2 + y^2 = a^2$  пересекаются в трех 1  $4 < |a| < \sqrt{17}$  2 |a| > 43 такое невозможно |a| = 4 $| \mathbf{5} | 2 < |a| < 2\sqrt{2}$ Сумма целых решений неравенства  $\sqrt{25-x^2}\geqslant \frac{12}{\pi}$  равна 1 -8**4** 0 **5** −15 **20** Система уравнений  $\begin{cases} y = \frac{|x|}{x} - \frac{|x-2|}{x-2} \\ y = kx+1 \end{cases}$ имеет два решения при всех k из промежутка 1 (0;1)Ящик вмещает 12 кг риса или 16 кг пшена. Если ящик заполнить и тем и другим на одинаковые суммы, то содержимое будет весить 15 кг и стоить 90 руб. Суммарная стоимость 1 кг риса и 1 кг пшена равна 1 18,75 py6. 2 14 py6. 3 15 py6. 4 12 py6. 5 17 py6. Множеством значений функции  $y = \frac{(x+5)(x-2) + (x+2)\sqrt{x^2 - 25}}{(\sqrt{x-5})^2(x+2) + (x-2)\sqrt{x^2 - 25}}$  является

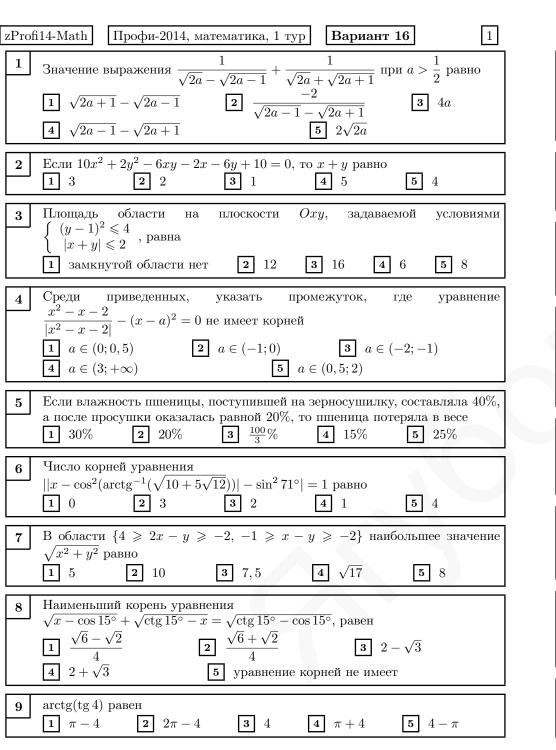
[1] [0;1] [2]  $(0;+\infty)$  [3]  $(-\infty;1)$  [4]  $(1;+\infty)$ **5** [2; 5) Сумма  $\arcsin\left(\cos\frac{23}{24}\pi\right) + \arccos\left(\sin\frac{23}{24}\pi\right)$  равна  $\boxed{1} - \frac{3}{8}\pi$   $\boxed{2} - \frac{\pi}{12}$   $\boxed{3} \ 0$   $\boxed{4} \ \frac{13}{24}\pi$   $\boxed{5} \ \frac{3}{8}\pi$ Произведение корней уравнения  $x^{\log_4 7} = 49 \cdot 8^{\log_x 4}$  равно **2** 49 **5** 16  $\log_7 4$ **3** 36 Найдите сумму значений a, при которых решениями неравенства  $|2x-a| \leq |x-1|$  является отрезок длины 1. **5** −3 **4** 4 |1| -0.5

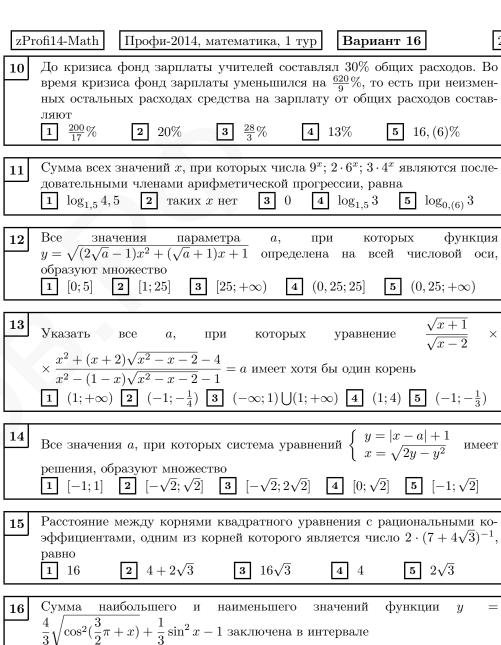
Сумма всех коэффициентов многочлена  $P(x) = ((1 + \sin \alpha)x - 1)^2 \times$  $\times ((\cos \alpha + 1)x - 1)^2 - (\sin^2 \alpha \cdot x^2 + 1) \cdot (\cos^2 \alpha \cdot x^2 - 1)$ , приведенного к стан-

 $|\mathbf{4}| \cos^2 \alpha$ 

 $|\mathbf{5}| \sin^2 \alpha$ 

 $3 2\sin^2 \alpha$ 


дартному виду, равна


 $2 \cos^2 \alpha$ 

1 1

zProfi14-Math Профи-2014, математика, 1 тур Вариант 15 Решить неравенство  $3x + 4 > \sqrt{9 + 4x(x+3)} + \sqrt{-2x^2 - 8x + 10}$  $\boxed{1} \left(\frac{2\sqrt{13}-5}{3};1\right] \boxed{2} \left(-\frac{1}{3};1\right] \boxed{3} \left(-\frac{4}{3};1\right] \boxed{4} \left(\frac{\sqrt{13}-5}{3};1\right] \boxed{5} \left(-5;1\right]$ Сумма целых решений неравенства  $(x-5\sqrt[3]{\log_5 2})(2+x)(2\sqrt[3]{\log_2^2 5}-x)(x-\pi) \leqslant 0$ на промежутке  $x \in [-4; 6]$  равна **1** 3 **2** 6 **4** 9 Количество различных корней уравнения  $\cos \frac{\pi x}{2} \cdot \sqrt{(x+4,5)(49\cos x - \sqrt{99}\sin x - 51)(x-211,5)} = 0$  равно **3** 73 **1** 71  $\mathbf{2}$   $\infty$ Неравенство  $x^2 - (3a - 2)x + (a - 1)(2a - 1) \le 0$  выполняется для всех  $x \in [1; 2]$  при любых a из множества **2** [1; 3]  $1 \quad (-\infty; 1, 5] \cup [2; +\infty)$ **3** [1, 5; 3] [5]  $(-\infty;1]$   $[3;+\infty)$ [1, 5; 2]

**5** 0





**3** (1; 3)

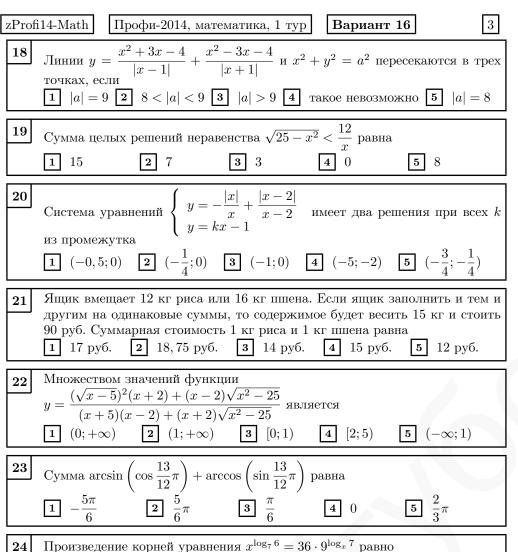
f(x) = (0, 2x + 1)(0, 4 - 0, 1x)(x - 2)(x + 3) + 1,02 равно

**4** (2; 3)

**4** 1

[5] (-1;0,5)

 $\boxed{5}$  -2


 $1 (-4; -\pi)$   $2 (\pi; 4)$ 

Наибольшее значение функции

**1** −1

 $\boxed{\mathbf{2}}$  -3

функция



**3** 25

 $3 \quad 2\cos^2\alpha$ 

Сумма всех коэффициентов многочлена  $P(x) = ((1 - \sin \alpha)x - 1)^2 \times$  $\times ((\cos \alpha - 1)x + 1)^{\frac{1}{2}} - (\cos^2 \alpha \cdot x^2 - 1) \cdot (\sin^2 \alpha \cdot x^2 + 1)$ , приведенного к стан-

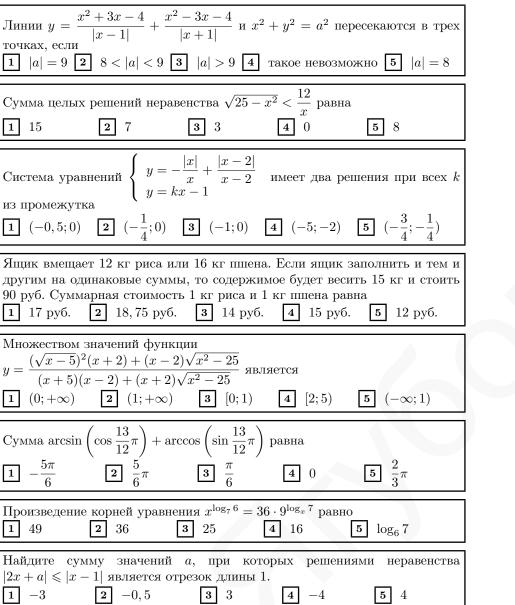
4 16

 $4 2\sin^2\alpha$ 

**1** 49

 $\boxed{1}$  -3

 $1 \sin^2 \alpha$ 


дартному виду, равна

**2** 36

 $|2x+a| \leq |x-1|$  является отрезок длины 1.

[2] -0.5

**2** 1



 $\log_6 7$ 

**5** 4

 $|\mathbf{5}| \cos^2 \alpha$ 

zProfi14-Math

Профи-2014, математика, 1 тур

Сумма целых решений неравенства

на промежутке  $x \in [-6; 5]$  равна

 $(x-4\sqrt[3]{\log_4^2 3})(x-\pi)(3\sqrt[3]{\log_3 4}-x)(x+4) \ge 0$ 

Количество различных корней уравнения

**2** 72

при любых а из множества

 $(-\infty;3] \bigcup [4;+\infty)$ 

 $1 \quad (-\infty; 2] \bigcup [4; +\infty)$ 

Решить неравенство  $4x - 5 > \sqrt{4 + 3x(3x - 4)} + \sqrt{-2x^2 + 14x - 20}$ 

 $\boxed{1} \left(\frac{10+\sqrt{13}}{3};5\right] \boxed{2} (2;5) \boxed{3} \left(\frac{10-\sqrt{13}}{3};5\right) \boxed{4} \left(\frac{5+\sqrt{13}}{2};5\right) \boxed{5} (4;5)$ 

 $\cos\left(\frac{\pi x}{2} - \frac{\pi}{2}\right) \cdot \sqrt{(x+140)(\sqrt{99}\sin x - 49\cos x - 51)(x-4,5)} = 0$  pabho

3  $\infty$ 

Неравенство  $x^2 - 3ax + (a+1)(2a-1) \ge 0$  выполняется для всех  $x \in [3;5]$ 

Вариант 16

**5** 4

**5** 74

**3** [3; 4]

[4] -7

 $\lceil \mathbf{5} \rceil \ (-\infty; 3] \bigcup [6; +\infty)$ 

| zProf | i14-Math Профи-2014, математика, 1 тур Вариант 17                                                                                                                                                                                                                                                                                            |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Значение выражения $\sqrt{2a} + \sqrt{2a-1} + \frac{1}{\sqrt{2a} + \sqrt{2a+1}}$ при $a > \frac{1}{2}$ равно  1 $\sqrt{2a+1} - \sqrt{2a-1}$ 2 $4a$ 3 $\sqrt{2a-1} - \sqrt{2a+1}$ 4 $\frac{2}{\sqrt{2a+1} - \sqrt{2a-1}}$ 5 $2\sqrt{2a}$                                                                                                      |
| 2     | Если $5x^2 + 2y^2 + 4xy + 2x - 4y + 5 = 0$ , то $y - x$ равно  1 3 2 4 3 5 4 2 5 1                                                                                                                                                                                                                                                           |
| 3     | Площадь области на плоскости $Oxy$ , задаваемой условиями $\begin{cases} (x-2)^2 \leqslant 1 \\  x-y  \leqslant 3 \end{cases}$ , равна $\begin{bmatrix} 1 & 8 & 2 \end{bmatrix}$ замкнутой области нет $\begin{bmatrix} 3 & 12 & 4 & 16 & 5 \end{bmatrix}$ 6                                                                                 |
| 4     | Среди приведенных, указать промежуток, где уравнение $\frac{ x^2-x-2 }{x^2-x-2}+$ $(x+a)^2=0$ имеет два различных корня $\boxed{1} \ a\in (0;0,5) \qquad \boxed{2} \ a\in (-\infty;-2) \qquad \boxed{3} \ a\in (3;+\infty)$ $\boxed{4} \ a\in (0,5;1) \qquad \boxed{5} \ a\in (-0,5;0)$                                                      |
| 5     | Если влажность пшеницы, поступившей на зерносушилку, составляла $32\%$ , а после просушки оказалась равной $20\%$ , то пшеница потеряла в весе 1 $12\%$ 2 $26\%$ 3 $\frac{300}{17}\%$ 4 $15\%$ 5 $16\%$                                                                                                                                      |
| 6     | Число корней уравнения $  x-\sin^2(\arctan(\sqrt{7}+3\sqrt{18})) -\cos^2 15^\circ =2 \text{ равно}$ 1 0 2 2 3 1 4 3 5 4                                                                                                                                                                                                                      |
| 7     | В области $\{-2\leqslant y+2x\leqslant 4,\ -2\leqslant y+x\leqslant -1\}$ наибольшее значение $\sqrt{x^2+y^2}$ равно 1 5 2 $\sqrt{17}$ 3 10 4 7,5 5 8                                                                                                                                                                                        |
| 8     | Наименьший корень уравнения $\sqrt{x-\sin 15^{\circ}} + \sqrt{\tan 15^{\circ}} - x = \sqrt{\tan 15^{\circ}} - \sin 15^{\circ}, \text{ равен}$ $\boxed{1}  \frac{\sqrt{6}+\sqrt{2}}{4} \qquad \boxed{2}  2+\sqrt{3} \qquad \boxed{3}  \text{уравнение корней не имеет}$ $\boxed{4}  2-\sqrt{3} \qquad \boxed{5}  \frac{\sqrt{6}-\sqrt{2}}{4}$ |
| 9     | $\arccos(\cos 4)$ равен $\boxed{1} \ 4 - \pi$ $\boxed{2} \ \pi - 4$ $\boxed{3} \ \pi + 4$ $\boxed{4} \ 2\pi - 4$ $\boxed{5} \ 4$                                                                                                                                                                                                             |

```
zProfi14-Math
                     Профи-2014, математика, 1 тур
                                                               Вариант 17
     До кризиса фонд зарплаты учителей составлял 20% общих расходов. Во
      время кризиса фонд зарплаты уменьшился на 20%, то есть при неизменных
      остальных расходах средства на зарплату от общих расходов составляют
                        2 15%
                                                             20\%
                                                                         5 16, (6)%
                                        3 16%
      Сумма всех значений x, при которых числа 4^x; 3, 5 \cdot 10^x; 10 \cdot 25^x являются
      последовательными членами арифметической прогрессии, равна
      1 \log_{0.4} 2 2 \lg^{-1} 0.4 3 takux x het 4 \lg^{-1} 2.5 5 \log_{0.4} 5
                значения
                                                          при
     y = \sqrt{(2\sqrt{a}-2)x^2 + (\sqrt{a}-1)x - 1} определена на всей числовой оси,
      образуют множество
      1 (0, 25; +\infty)
                              2 {1}
                                             3 [0; 5]
13
      Указать
                                               которых
                                                              уравнение
                                      при
    	imes rac{x^2 + (x+3)\sqrt{x^2 - 2x - 3} - 9}{x^2 - (1-x)\sqrt{x^2 - 2x - 3} - 1} = a имеет хотя бы один корень
     1 \quad (-\infty; 1) \bigcup (1; +\infty) \quad 2 \quad (-1; -\frac{1}{4}) \quad 3 \quad (-1; -\frac{1}{3}) \quad 4 \quad (1; 3) \quad 5 \quad (1; +\infty)
     Все значения a, при которых система уравнений \begin{cases} y = |x - a| + 2 \\ x = \sqrt{4y - y^2} \end{cases}
      решения, образуют множество
       \boxed{1} \ [-\sqrt{2};1] \ \boxed{2} \ [-\sqrt{8};\sqrt{8}] \ \boxed{3} \ [-\sqrt{2};0] \ \boxed{4} \ [-1;1] \ \boxed{5} \ [-2;2\sqrt{2}] 
      Расстояние между корнями квадратного уравнения с рациональными ко-
      эффициентами, одним из корней которого является число 3\cdot(3+\sqrt{6})^{-1}
      равно
                                                             4 2\sqrt{6}
      1 \ 3\sqrt{6}
                        \boxed{2} \ \ 4 + 2\sqrt{3}
                                              3 3
     Сумма наибольшего и наименьшего значений функции y = -\frac{1}{3}\sin^2 x —
      -\frac{4}{3}\sqrt{\cos^2(\frac{\pi}{2}+x)}+1 заключена в интервале
```

**2** (1; 3)

f(x) = (0, 1x + 0, 3)(x - 1)(x - 2)(0, 1x - 0, 6) равно

Наименьшее значение функции

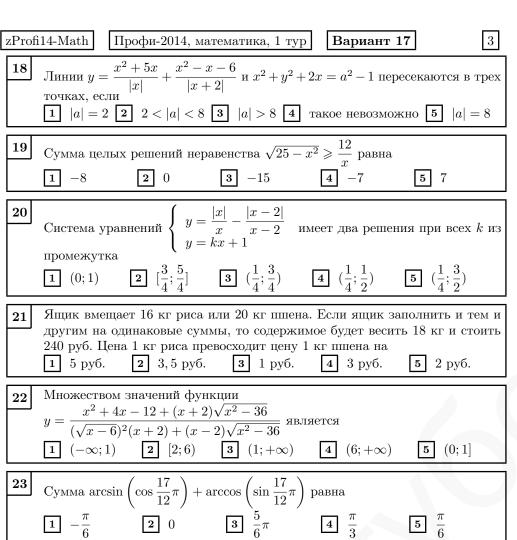
 $[3] (-4; -\pi)$ 

**3** 1

1 (-1; 0, 5)

**1** 2

функция


**5** [1; 49)

**5** 9

**5** (2; 3)

 $\boxed{5}$  -1

**4**  $(\pi; 4)$ 



Произведение корней уравнения  $x^{\log_4 7} = 49 \cdot 8^{\log_x 4}$  равно

**3** 16

[3] -0.5

 $|\mathbf{3}| \cos^2 \alpha$ 

Сумма всех коэффициентов многочлена  $P(x) = ((1-\cos\alpha)x-1)^2 \times$  $\times ((\sin \alpha - 1)x + 1)^2 - (\sin^2 \alpha \cdot x^2 - 1) \cdot (\cos^2 \alpha \cdot x^2 + 1)$ , приведенного к стан-

4 36

 $\boxed{4}$  -4

 $4 \mid 2\cos^2\alpha$ 

**2** 49

 $|2x+a| \leq |x+1|$  является отрезок длины 1.

**2** 1

 $\log_7 4$ 

 $\boxed{1}$  -3

 $1 \sin^2 \alpha$ 

дартному виду, равна

```
Найдите сумму значений а, при которых решениями неравенства
```

**5** 25

**5** 4

 $|\mathbf{5}| 2\sin^2 \alpha$ 

zProfi14-Math

**1** 71

**4** [2; 4]

Профи-2014, математика, 1 тур

Сумма целых решений неравенства

на промежутке  $x \in [-4; 6]$  равна  $\boxed{\mathbf{2}} \quad 0$ 

 $(x-5\sqrt[3]{\log_5 2})(2+x)(2\sqrt[3]{\log_2^2 5}-x)(x-\pi) \leqslant 0$ 

Количество различных корней уравнения

**2** 72

 $x \in [1; 3]$  при любых a из множества

Решить неравенство  $3x + 4 > \sqrt{9 + 4x(x+3)} + \sqrt{-2x^2 - 8x + 10}$ 

 $\sin \pi x \cdot \sqrt{(x+2,5)(41-40\sin x+\sqrt{80}\cos x)(70-x)}=0$  равно

**3** 74

Неравенство  $x^2 + (2 - 3a)x + (1 - a)(1 - 2a) ≥ 0$  выполняется для всех

**5** [1; 4]

 $\boxed{1} (-\infty; 0] \bigcup [2; +\infty) \qquad \boxed{2} (-\infty; 1] \bigcup [4; +\infty) \qquad \boxed{3} (-\infty; 1] \bigcup [2; +\infty)$ 

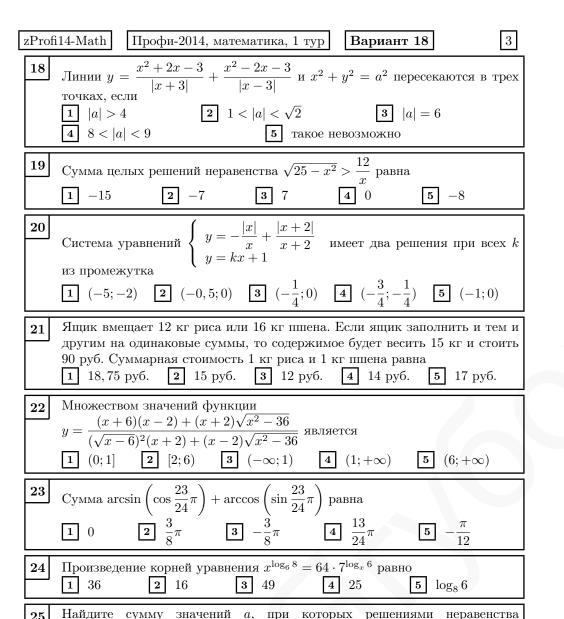
 $\boxed{1} \left(\frac{2\sqrt{13}-5}{3};1\right] \boxed{2} \left(-\frac{4}{3};1\right] \boxed{3} \left(-\frac{1}{3};1\right] \boxed{4} \left(\frac{\sqrt{13}-5}{3};1\right] \boxed{5} \left(-5;1\right]$ 

**4** 4

Вариант 17

**5** 9

| $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                 |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                       |
| <b>2</b> Если $5x^2 + 2y^2 + 4xy + 2x - 4y + 5 = 0$ , то $x + y$ равно <b>1</b> 4 <b>2</b> 3 <b>3</b> 1 <b>4</b> 5 <b>5</b> 2                                                                                                                                         |
| $egin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                   |
| Среди приведенных, указать промежуток, где уравнение $\frac{ x^2-2x-3 }{x^2-2x-3}+$ $(x-a)^2=0$ имеет два различных корня $\boxed{1} \ a\in (-1;1)$ $\boxed{2} \ a\in (0;2)$ $\boxed{3} \ a\in (-\infty;-1)$ $\boxed{4} \ a\in (4;+\infty)$ $\boxed{5} \ a\in (-1;3)$ |
| 5       Если влажность пшеницы, поступившей на зерносушилку, составляла 44%, а после просушки оказалась равной 20%, то пшеница потеряла в весе         1       \$\frac{300}{7}\$%       2       \$32%       4       30%       5       24%                             |
| 6 Число корней уравнения $  x-\cos^2(\arctan(\sqrt{10+5\sqrt{12}})) -\sin^271^\circ =1 \text{ равно}$ 1 4 2 1 3 0 4 3 5 2                                                                                                                                             |
| 7 В области $\{-4 \leqslant y + 2x \leqslant 2, \ 1 \leqslant y + x \leqslant 2\}$ наибольшее значение $\sqrt{x^2 + y^2}$                                                                                                                                             |
| равно $1 \ 8$ $2 \ 7,5$ $3 \ \sqrt{17}$ $4 \ 10$ $5 \ 5$                                                                                                                                                                                                              |
| 8 Наибольший корень уравнения $\sqrt{x-\sin 15^{\circ}} + \sqrt{\operatorname{tg} 15^{\circ}} - x = \sqrt{\operatorname{tg} 15^{\circ}} - \sin 15^{\circ}, \text{ равен}$                                                                                             |
| 1 $\frac{\sqrt{6} - \sqrt{2}}{4}$ 2 $2 + \sqrt{3}$ 3 $2 - \sqrt{3}$                                                                                                                                                                                                   |
| 4 уравнение корней не имеет                                                                                                                                                                                                                                           |
| 9 arcctg(ctg 4) pabeh 1 4 2 $4-\pi$ 3 $\pi+4$ 4 $2\pi-4$ 5 $\pi-4$                                                                                                                                                                                                    |


| 10 | До кризиса фонд зарплаты учителей составлял $25\%$ общих расходов. Во время кризиса фонд зарплаты уменьшился на $40\%$ , то есть при неизменных остальных расходах средства на зарплату от общих расходов составляют 1 $20\%$ 2 $15\%$ 3 $25\%$ 4 $16, (6)\%$ 5 $\frac{300}{19}\%$ |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                                                                                    |
| 11 | Сумма всех значений $x$ , при которых числа $9^x$ ; $2 \cdot 6^x$ ; $3 \cdot 4^x$ являются последовательными членами арифметической прогрессии, равна $1 \log_{0,(6)} 3$ $2 \log_{1,5} 4,5$ $3 \log_{1,5} 3$ $4 0$ $5$ таких $x$ нет                                               |
|    |                                                                                                                                                                                                                                                                                    |
| 12 | Все значения параметра $a$ , при которых функция $y=\sqrt{(5-\sqrt{a})x^2+(\sqrt{a}+3)x+1}$ определена на всей числовой оси, образуют множество $1 \ [1;25)$ $2 \ [0;25)$ $3 \ [0;1]$ $4 \ \{1\}$ $5 \ [1;5]$                                                                      |
|    |                                                                                                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                                                                                                    |
| 13 | Указать все $a$ , при которых уравнение $\frac{\sqrt{x-3}}{\sqrt{x+1}}$ .                                                                                                                                                                                                          |
|    | $\frac{x^2 + (1-x)\sqrt{x^2 - 2x - 3} - 1}{x^2 + (1-x)\sqrt{x^2 - 2x - 3}} = a$ имеет хотя бы олин корень                                                                                                                                                                          |
|    | $\frac{x^2 + (1-x)\sqrt{x^2 - 2x - 3} - 1}{x^2 - (x+3)\sqrt{x^2 - 2x - 3} - 9} = a$ имеет хотя бы один корень                                                                                                                                                                      |
|    | $\boxed{1} \ (-\infty; -1) \bigcup (-1; +\infty) \boxed{2} \ (-1; -\frac{1}{4}) \boxed{3} \ (-1; +\infty) \boxed{4} \ (1; 3) \boxed{5} \ (-1; -\frac{1}{3})$                                                                                                                       |
| _  |                                                                                                                                                                                                                                                                                    |
| 14 | Все значения $a$ , при которых система уравнений $\left\{ \begin{array}{l} y= x+a +2\\ x=\sqrt{4y-y^2} \end{array} \right.$ имеет                                                                                                                                                  |
|    | решения, образуют множество $ \boxed{ 1 } [-\sqrt{2};1] \ \boxed{ 2 } [-\sqrt{2};0] \ \boxed{ 3 } [-2\sqrt{2};2] \ \boxed{ 4 } [-\sqrt{8};\sqrt{8}] \ \boxed{ 5 } [-1;1] $                                                                                                         |
|    |                                                                                                                                                                                                                                                                                    |
| 15 | Расстояние между корнями квадратного уравнения с рациональными коэффициентами, одним из корней которого является число $(\sqrt{5}-2)^{-1}$ , равно $\boxed{1}$ $2\sqrt{5}$ $\boxed{2}$ $4+2\sqrt{5}$ $\boxed{3}$ $2$ $\boxed{4}$ $4$ $\boxed{5}$ $4\sqrt{5}$                       |
|    |                                                                                                                                                                                                                                                                                    |
| 16 | Сумма наибольшего и наименьшего значений функции $y=\frac{1}{2}\cos^2 x$ —                                                                                                                                                                                                         |
|    | $2\sqrt{\sin^2(\frac{\pi}{2}+x)}-1$ заключена в интервале                                                                                                                                                                                                                          |
|    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                    |
| 17 | Наименьшее значение функции $f(x) = (0, 1x - 0, 2)(x + 3)(x - 4)(0, 2x + 1) - 2, 02 \text{ равно}$                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                    |

Профи-2014, математика, 1 тур

zProfi14-Math

2

Вариант 18



Сумма всех коэффициентов многочлена  $P(x) = ((1 + \sin \alpha)x - 1)^2 \times ((\cos \alpha + 1)x - 1)^2 - (\sin^2 \alpha \cdot x^2 + 1) \cdot (\cos^2 \alpha \cdot x^2 - 1)$ , приведенного к стан-

3 1

 $4 \sin^2 \alpha$ 

 $\boxed{5}$  -4

 $|\mathbf{5}| \cos^2 \alpha$ 

 $|2x-a| \leq |x-1|$  является отрезок длины 1.

 $2 \cos^2 \alpha$ 

[2] -0.5

дартному виду, равна

 $1 \quad 2\sin^2\alpha$ 

```
      zProfi14-Math
      Профи-2014, математика, 1 тур
      Вариант 18
      4

      27
      Решить неравенство 4x - 5 > \sqrt{1 + x(x+2)} + \sqrt{-3x^2 + 6x + 24}
      1 \left(\frac{7 + \sqrt{33}}{4}; 4\right] 2 (3; 4] 3 \left(\frac{4 + \sqrt{33}}{4}; 4\right] 4 \left(\frac{5}{4}; 2\right] 5 (-2; 4]

      28
      Сумма целых решений неравенства \left(x - 4\sqrt[3]{\log_4 3}\right)(\pi - x)\left(3\sqrt[3]{\log_3^2 4} - x\right)(x+4) \leqslant 0 на промежутке x \in [-6; 5] равна 1 -2 2 0 3 -3 4 -4 5 -6

      29
      Количество различных корней уравнения \cos\frac{\pi x}{2} \cdot \sqrt{(x+4,5)(49\cos x - \sqrt{99}\sin x - 51)(x-211,5)} = 0 равно
```

3  $\infty$ 

 $2 \quad (-\infty;1] \bigcup [3;+\infty)$ 

Неравенство  $x^2 - (3a-2)x + (a-1)(2a-1) \le 0$  выполняется для всех

 $[5] (-\infty; 1, 5] \cup [2; +\infty)$ 

**5** 73

**3** [1; 3]

**2** 72

 $x \in [1; 2]$  при любых a из множества

**1** [1, 5; 3]

[1, 5; 2]