Тесты по теме №39 «Производные функций».

- 1. Найти точку максимума функции: $y = 5 + 4x \frac{x^3}{3}$.
 - 2
 - -2
 - 37/3
 - -7/3
- 2. На отрезке [-3;3] найти наибольшее значение функции

$$y = x^3 - 6x^2$$
.

- 0
- -27
- 27
- -32
- 3. Найдите точку минимума функции $y = \frac{49}{x} + x + 49$.
 - 7
 - -7
 - 63
 - 35
- 4. На отрезке [-4;-1] найти наибольшее значение функции

$$y = x + \frac{4}{x} + 4.$$

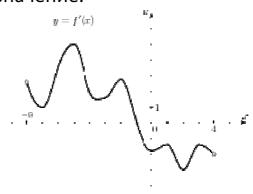
- 0
- 8
- -1
- 9
- 5. Найти точку минимума функции $y = 5 + 18x 4x^{3/2}$.
 - 9
 - 0
 - 5
 - 59

6. На отрезке [0,7; 1,7] найти наибольшее значение функции

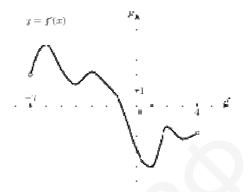
$$y = 5 \ln x - 5x + 7.$$

- 2
- 1
- 7
- Ø
- 7. На отрезке [4,5;13] найти наименьшее значение функции $y = x^3 12x^2 + 36x + 11$.
 - 11
 - 2
 - 6
 - 21,125
- 8. На отрезке $[-\frac{3\pi}{2};0]$ найти наименьшее значение функции

$$y = 3\sin x - 10x + 4$$
.


- 4
- Ø
- -3
- 0
- 9. На отрезке $[-\frac{\pi}{4};0]$ найти наименьшее значение функции

$$y = 7x - 7tgx + 5.$$


- 5
- Ø
- $12-7\pi/4$
- (
- 10. На отрезке [12;14] найти наименьшее значение функции $y = (x 14)e^{x-13}$.
 - -1
 - 12
 - Ø
 - 14
- 11. На отрезке $[0; \frac{\pi}{2}]$ найти наименьшее значение функции

$$y = 6 + 2\pi - 8x - 8\sqrt{2}\cos x$$
.

- -2
- 0
- Ø
- \bullet $\pi/4$
- 12. Если производная функции отрицательна в каждой точке некоторого интервала, то функция на этом промежутке...
 - убывает
 - возрастает
 - не монотонна
 - отрицательна
- 13. Если производная функции положительна в каждой точке некоторого интервала, то функция на этом промежутке...
 - возрастает
 - убывает
 - положительна
 - постоянна
- 14. Если в точке x_0 производная меняет знак с минуса на плюс, то x_0 есть точка...
 - минимума
 - максимума
 - наибольшего значения функции
 - наименьшего значения функции
- 15. Если в точке x_0 производная меняет знак с плюса на минус, то x_0 есть точка...
 - максимума
 - наибольшего значения функции
 - наименьшего значения функции
 - минимума
- 16.На рисунке изображен график производной функции f(x), определенной на интервале (-8;4). В какой точке отрезка [-7;-3] f(x) принимает наименьшее значение.

- -7
- -1
- 2
- -3
- 17.На рисунке изображен график производной функции f(x), определенной на интервале (-7;4). В какой точке отрезка [-6;-1] f(x) принимает наибольшее значение.

- -1
- -6
- 4
- -3
- 18. Значение производной функции $y = \frac{x^2 + x + 1}{x^2 + 1}$ в точке графика с абсциссой x = 1 равно:
 - 0
 - -1
 - 1
 - 4
- 19.3
начение производной функции $y=5x^4-\sqrt{2x}\,$ в точке графика с абсциссой
х = 1/2 равно:
 - 1,5
 - 1
 - -1
 - -1,5
- 20.3 начение производной функции у = $\sin 3x + 1$ в точке графика с абсциссой $x = \pi/2$ равно:
 - 3
 - 1
 - -1

- 0
- 21. Найти производную функции $y = e^{2x+1}$.
 - 2e^{2x+1}
 - $e^{2x+1} + 2e^{2x+1}$
 - e^{2x+1}
 - $e^{2x+1} + e$
- 22. Найти производную функции $y = 2^x + 3^x + 4^x$
 - $2^x \ln 2 + 3^x \ln 3 + 4^x \ln 4$
 - $\bullet \quad \frac{2^x}{\ln 2} + \frac{3^x}{\ln 3} + \frac{4^x}{\ln 4}$
 - 9
 - 9x
- 23. Найти производную функции $y = ln(x^2 + 1)$
 - $\bullet \quad \frac{2x}{x^2+1}$
 - $2x(x^2+1)$
 - $\bullet \quad \frac{x}{x^2+1}$
 - $x(x^2+1)$
- 24. Найти производную функции y = xlnx
 - lnx + 1
 - Inx
 - $\ln x + \frac{1}{x}$
 - 1
- 25. Найти производную функции $y = x^2 e^x$
 - $(x^2 + 2x)e^x$
 - 2xe^x
 - $x^2 + 2xe^x$
 - $2x^2e$