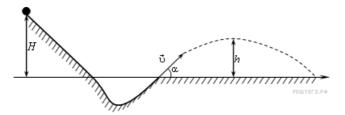
Закон сохранения энергии и импульса

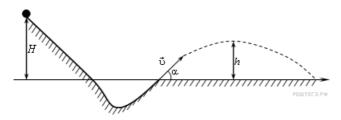
1. Задание 29 № 2941


Снаряд массой 4 кг, летящий со скоростью 400 м/с, разрывается на две равные части, одна из которых летит в направлении движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличилась на величину ΔE . Скорость осколка, летящего по направлению движения снаряда, равна 900 м/с. Найдите ΔE .

2. Задание 29 № 2942

Снаряд массой 4 кг, летящий со скоростью 400 м/с, разрывается на две равные части, одна из которых летит в направлении движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличилась на величину $\Delta E = 0.5 \ \mathrm{MД_{ж}}$. Определите скорость осколка, летящего по направлению движения снаряда.

3. Задание 29 № 2943


При выполнении трюка «Летающий велосипедист» гонщик движется по трамплину под действием силы тяжести, начиная движение из состояния покоя с высоты H (см. рисунок).

На краю трамплина скорость гонщика направлена под углом $\alpha = 30^{\circ}$ к горизонту. Пролетев по воздуху, гонщик приземляется на горизонтальный стол, находящийся на той же высоте, что и край трамплина. Какова высота полета h на этом трамплине? Сопротивлением воздуха и трением пренебречь.

4. Задание 29 № 2944

При выполнении трюка «Летающий велосипедист» гонщик движется по трамплину под действием силы тяжести, начиная движение из состояния покоя с высоты H (см. рисунок).

На краю трамплина скорость гонщика направлена под углом $\alpha=30^\circ$ к горизонту. Пролетев по воздуху, гонщик приземляется на горизонтальный стол, находящийся на той же высоте, что и край трамплина. Какова дальность полета L на этом трамплине? Сопротивлением воздуха и трением пренебречь.

5. Задание 29 № 2945

Кусок пластилина сталкивается со скользящим навстречу по горизонтальной поверхности стола бруском и прилипает к нему. Скорости пластилина и бруска перед ударом направлены взаимно противоположно и равны $v_{\rm n,r}=15~{\rm m/c}$ и $v_{\rm 6p}=5~{\rm m/c}$. Масса бруска в 4 раза больше массы пластилина. Коэффициент трения скольжения между бруском и столом $\mu=0.17$. На какое расстояние переместятся слипшиеся брусок с пластилином к моменту, когда их скорость уменьшится в 2 раза?

6. Задание 29 № 2946

Кусок пластилина сталкивается со скользящим навстречу по горизонтальной поверхности стола бруском и прилипает к нему. Скорости пластилина и бруска перед ударом направлены взаимно противоположно и равны $\nu_{\rm пл}=15~{\rm M/c}$ и $\nu_{\rm бp}=5~{\rm M/c}$. Масса бруска в 4 раза больше массы пластилина. К моменту, когда скорость слипшихся бруска и пластилина уменьшилась в 2 раза, они переместились на 0,22 м. Определите коэффициент трения μ бруска о поверхность стола.

7. Задание 29 № 2947

Брусок массой $m_1 = 500$ г соскальзывает по наклонной плоскости с высоты h и, двигаясь по горизонтальной поверхности, сталкивается с неподвижным бруском массой $m_2 = 300$ г. В результате абсолютно неупругого соударения общая кинетическая энергия брусков становится равной 2,5 Дж. Определите высоту наклонной плоскости h. Трением при движении пренебречь. Считать, что наклонная плоскость плавно переходит в горизонтальную.

8. Задание 29 № <u>2948</u>

Брусок массой $m_1 = 500$ г соскальзывает по наклонной плоскости с высоты h = 0.8 м и, двигаясь по горизонтальной поверхности, сталкивается с неподвижным бруском массой $m_2 = 300$ г. Считая столкновение абсолютно неупругим,

2018-09-24

определите общую кинетическую энергию брусков после столкновения. Трением при движении пренебречь. Считать, что наклонная плоскость плавно переходит в горизонтальную.

9. Задание 29 № 2953

Маленький шарик падает сверху на наклонную плоскость и упруго отражается от неё. Угол наклона плоскости к горизонту равен 30°. На какое расстояние по горизонтали перемещается шарик между первым и вторым ударами о плоскость? Скорость шарика непосредственно перед первым ударом направлена вертикально вниз и равна 1 м/с.

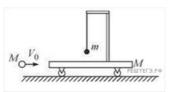
10. Задание 29 № 3074

Шайба массой m начинает движение по желобу AB из точки A из состояния покоя. Точка A расположена выше точки B на высоте H=6 м. В процессе движения по желобу механическая энергия шайбы из-за трения уменьшается на $\Delta E=2$ Дж. В точке B шайба вылетает из желоба под углом $\alpha=15^\circ$ к горизонту и падает на землю в точке D, находящейся на одной горизонтали с точкой B (см. рисунок). BD=4 м. Найдите массу шайбы m. Сопротивлением воздуха пренебречь.

11. Задание 29 № 3075

Снаряд массой 4 кг, летящий со скоростью 400 м/с, разрывается на две равные части, одна из которых летит в направлении движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличилась на величину ΔE . Скорость осколка, летящего по направлению движения снаряда, равна 900 м/с. Найдите ΔE .

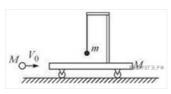
12. Задание 29 № 3262


Граната, летевшая с некоторой скоростью, разрывается на две части. Первый осколок летит под углом 90° к первоначальному направлению со скоростью 40 м/с, а второй — под углом 30° со скоростью 20 м/с. Чему равно отношение массы второго осколка к массе первого осколка.

13. Задание 29 № 3681

Маятник состоит из маленького груза массой $M=200~{\rm F}$ и очень легкой нити подвеса длиной $L=1,25~{\rm M}$. Он висит в состоянии покоя в вертикальном положении. В груз ударяется небольшое тело массой $m=100~{\rm F}$, летевшее в горизонтальном направлении со скоростью $v=10~{\rm M/c}$. После удара тело останавливается и падает вертикально вниз. На какой максимальный угол α маятник отклонится от положения равновесия после удара?

14. Задание 29 № 4216


На тележке массой $M=400~\Gamma$, которая может кататься без трения по горизонтальной плоскости, имеется лёгкий кронштейн, на котором подвешен на нити маленький шарик массой от $m=100~\Gamma$. На тележку по горизонтали налетает и абсолютно упруго сталкивается с ней шар массой M, летящий со скоростью $V_0=2~\mathrm{M/c}$ (см. рисунок). Чему будет равен модуль скорости тележки в тот момент, когда нить, на которой подвешен шарик, отклонится на максимальный угол от вертикали? Длительность столкновения шара с тележкой считать очень малой.

15. Задание 29 № 4251

На тележке массой $M=400~{\rm r}$, которая может кататься без трения по горизонтальной плоскости, имеется лёгкий кронштейн, на котором подвешен на нити маленький шарик массой $m=200~{\rm r}$. На тележку по горизонтали налетает и абсолютно неупруго сталкивается с ней шар массой M (см. рисунок). После столкновения, в тот момент, когда нить, на которой подвешен шарик, отклонилась на максимальный угол от вертикали, скорость тележки была равна $V=4~{\rm m/c}$. Какова была скорость V_0 шара до столкновения?

Длительность столкновения шара с тележкой считать очень малой.

16. Задание 29 № 4754

Снаряд массой 2m разрывается в полёте на две равные части, одна из которых продолжает движение по направлению движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличивается за счёт энергии взрыва на величину ΔE . Модуль скорости осколка, движущегося по направлению движения

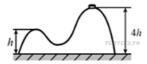
2018-09-24 2/7

снаряда, равен v_1 , а модуль скорости второго осколка равен v_2 . Найдите ΔE .

17. Задание 29 № 4789

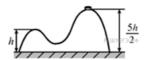
Снаряд, движущийся со скоростью v_0 , разрывается на две равные части, одна из которых продолжает движение по направлению движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличивается за счёт энергии взрыва на величину ΔE . Скорость осколка, движущегося вперёд по направлению движения снаряда, равна v_1 . Найдите массу m осколка.

18. Задание 29 № 4824

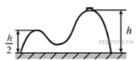

Снаряд в полёте разрывается на две равные части, одна из которых продолжает движение по направлению движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличивается за счёт энергии взрыва на величину ΔE . Модуль скорости осколка, движущегося по направлению движения снаряда, равен v_1 , а модуль скорости второго осколка равен v_2 . Найдите массу снаряда.

19. Задание 29 № 4929

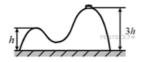
Снаряд массой 2m, движущийся со скоростью v_0 , разрывается на две равные части, одна из которых продолжает движение по направлению движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличивается за счёт энергии взрыва на величину ΔE . Скорость осколка, движущегося по направлению движения снаряда, равна v_1 . Найдите ΔE .


20. Задание 29 № <u>4964</u>

На гладкой горизонтальной поверхности стола покоится горка с двумя вершинами, высоты которых h и 4h (см. рисунок). На правой вершине горки находится шайба. Масса горки в 8 раз больше массы шайбы. От незначительного толчка шайба и горка приходят в движение, причём шайба движется влево, не отрываясь от гладкой поверхности горки, а поступательно движущаяся горка не отрывается от стола. Найдите скорость шайбы на левой вершине горки.

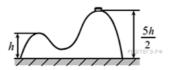

21. Задание 29 № 5174

На гладкой горизонтальной поверхности стола покоится горка с двумя вершинами, высоты которых h и $\frac{5}{2}h$ (см. рисунок). На правой вершине горки находится шайба. От незначительного толчка шайба и горка приходят в движение, причём шайба движется влево, не отрываясь от гладкой поверхности горки, а поступательно движущаяся горка не отрывается от стола. Скорость шайбы на левой вершине горки оказалась равной v. Найдите отношение масс шайбы и горки.


22. Задание 29 № 5209

Горка с двумя вершинами, высоты которых h и $\frac{h}{2}$, покоится на гладкой горизонтальной поверхности стола (см. рисунок). На правой вершине горки находится монета. От незначительного толчка монета и горка приходят в движение, причём монета движется влево, не отрываясь от гладкой поверхности горки, а поступательно движущаяся горка не отрывается от стола. В некоторый момент времени монета оказалась на левой вершине горки, имея скорость ν . Найдите скорость горки в этот момент.

23. Задание 29 № 5314


Горка с двумя вершинами, высоты которых h и 3h, покоится на гладкой горизонтальной поверхности стола (см. рисунок). На правой вершине горки находится шайба, масса которой в 12 раз меньше массы горки. От незначительного толчка шайба и горка приходят в движение, причём шайба движется влево, не отрываясь от гладкой поверхности горки, а поступательно движущаяся горка не отрывается от стола. Найдите скорость горки в тот момент, когда шайба окажется на левой вершине горки.

24. Задание 29 № 5629

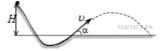
2018-09-24 3/7

 $\frac{5}{2}h$ (см. рисунок). На правой вершине горки находится шайба. От незначительного толчка шайба и горка приходят в движение, причём шайба движется влево, не отрываясь от гладкой поверхности горки, а поступательно движущаяся горка не отрывается от стола. Скорость шайбы на левой вершине горки оказалась равной v. Найдите отношение масс шайбы и горки.

25. Задание 29 № 5982

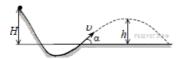
На гладкой горизонтальной плоскости находятся две одинаковые идеально упругие гладкие шайбы. Одна из них движется со скоростью \vec{V} , равной по модулю 2 м/с, а другая покоится вблизи прямой линии, проведённой через центр первой шайбы в направлении её скорости. Шайбы сталкиваются, и после соударения вторая, первоначально покоившаяся шайба отскакивает под углом $\alpha = 45^{\circ}$ к этой линии. Найдите скорость \vec{V}_1 первой шайбы после столкновения.

26. Задание 29 № 6017

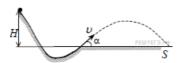

На гладкой горизонтальной плоскости находятся две одинаковые идеально упругие гладкие шайбы. Одна из них движется со скоростью \vec{V} , равной по модулю 3 м/с, а другая покоится вблизи прямой линии, проведённой через центр первой шайбы в направлении её скорости. Шайбы сталкиваются, и после соударения вторая, первоначально покоившаяся шайба отскакивает под углом $\alpha = 30^\circ$ к этой линии. Найдите скорость $\vec{v_1}$ первой шайбы после столкновения.

27. Задание 29 № 6173

По горизонтальной плоскости скользит стержень AB, причём точка O— его середина — обладает в данный момент времени скоростью \vec{V}_O , равной по модулю 3 м/с и направленной вдоль стержня от точки A к точке B. Точка B стержня при этом имеет скорость \vec{V}_B , равную по модулю 5 м/с. Чему равна и как направлена скорость \vec{V}_A точки A в этот момент времени?

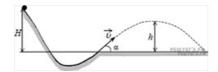

28. Задание 29 № 6217

При выполнении трюка «Летающий велосипедист» гонщик движется по гладкому трамплину под действием силы тяжести, начиная движение из состояния покоя с высоты H (см. рисунок). На краю трамплина скорость гонщика направлена под углом $\alpha = 60^{\circ}$ к горизонту. Пролетев по воздуху, он приземляется на горизонтальный стол, находящийся на той же высоте, что и край трамплина. Какова дальность полёта гонщика?


29. Задание 29 № 6252

При выполнении трюка «Летающий велосипедист» гонщик движется по гладкому трамплину под действием силы тяжести, начиная движение из состояния покоя с высоты H (см. рисунок). На краю трамплина скорость гонщика направлена под углом $\alpha = 60^{\circ}$ к горизонту. Пролетев по воздуху, он приземляется на горизонтальный стол, находящийся на той же высоте, что и край трамплина. Какова максимально возможная высота полёта гонщика?

30. Задание 29 № 6289


При выполнении трюка «Летающий велосипедист» гонщик движется по гладкому трамплину под действием силы тяжести, начиная движение из состояния покоя с некоторой высоты (см. рисунок). На краю трамплина скорость гонщика направлена под углом $\alpha=60^\circ$ к горизонту. Пролетев по воздуху, он приземлился на горизонтальный стол на той же высоте, что и край трамплина. Дальность полёта гонщика равна S. На какой высоте H над краем трамплина находится стартовая точка?

31. Задание 29 № 6325

При выполнении трюка «Летающий велосипедист» гонщик движется по гладкому трамплину под действием силы тяжести, начиная движение из состояния покоя с некоторой высоты (см. рисунок). На краю трамплина скорость гонщика направлена под углом $\alpha = 60^{\circ}$ к горизонту. Пролетев по воздуху, он приземляется на горизонтальный стол, поднявшись в полёте на высоту h над краем трамплина. С какой высоты H начинал движение гонщик?

2018-09-24 4/7

32. Задание 29 № 6361

Два маленьких тела бросают вертикально вверх из одной точки через промежуток времени $\Delta t = 3$ с со скоростями $V_1 = 20$ м/с и $V_2 = 10$ м/с. На какой высоте H тела столкнутся? Сопротивлением воздуха можно пренебречь.

33. Задание 29 № 6396

Два маленьких тела бросают вертикально вверх из одной точки через промежуток времени $\Delta t=3$ с, сообщив им одинаковые по модулю начальные скорости $V_1=V_2=20$ м/с. На какой высоте H тела столкнутся? Сопротивлением воздуха можно пренебречь.

34. Задание 29 № 6432

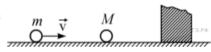
Горизонтальная поверхность разделена на две части: гладкую и шероховатую. На границе этих частей находится кубик массой m=100 г. Со стороны гладкой части на него по горизонтали налетает металлический шар массой M=300 г, движущийся со скоростью $v_0=2\,$ м/с. Определите расстояние L, которое пройдёт кубик до остановки после абсолютно упругого центрального соударения с шаром. Коэффициент трения кубика о поверхность $\mu=0,3$.

35. Задание 29 № 6467


Горизонтальная поверхность разделена на две части: гладкую и шероховатую. На границе этих частей находится небольшой кубик. Со стороны гладкой части на него налетает по горизонтали шар массой M=200~ г, движущийся со скоростью $v_0=3~$ м/с. Определите массу кубика m, если он остановился после абсолютно упругого центрального соударения с шаром на расстоянии L=1~ м от места столкновения. Коэффициент трения кубика о поверхность $\mu=0,3$.

36. Задание 29 № 6474

Шар, массой m_1 , движущийся со скоростью v_1 , ударяется о другой шар, массой m_2 . Соударение неупругое. Сразу после удара скорость шаров равна v. Найдите величину энергии ΔU , выделившуюся при соударении.


37. Задание 29 № 6666

По гладкой горизонтальной плоскости скользит шарик массой m=2 кг со скоростью v=2 м/с. Он испытывает лобовое абсолютно упругое столкновение с другим шариком массой M=2,5 кг, который до столкновения покоился (см. рис.). После этого второй шарик ударяется о массивный кусок пластилина, приклеенного к плоскости, и прилипает к нему. Найдите модуль импульса, который второй шарик передал куску пластилина.

38. Задание 29 № 6703

По гладкой горизонтальной плоскости скользит шарик массой m=1 кг со скоростью v=5 м/с. Он испытывает лобовое абсолютно упругое столкновение с другим шариком массой M=2 кг, который до столкновения покоился (см. рис.). После этого второй шарик ударяется о массивный кусок пластилина, приклеенного к плоскости, и прилипает к нему. Какое количество теплоты выделилось в процессе прилипания второго шарика к куску пластилина?

39. Задание 29 № 6942

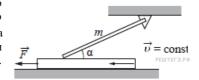
В системе, изображённой на рисунке, масса левого груза, лежащего на гладкой горизонтальной плоскости, равна m=2 кг. Масса правого груза, скользящего по плоскости со скоростью V=2 м/с, равна M=3 кг. Грузы соединены неупругим невесомым ненатянутым вначале шнуром, таким, что после его натяжения скорости грузов выравниваются. Какое количество теплоты Q выделится в системе в результате этого выравнивания скоростей грузов?

40. Задание 29 № 6974

В системе, изображенной на рисунке, масса левого груза, лежащего на гладкой горизонтальной плоскости, равна m=3 кг. Масса правого груза, скользящего по плоскости с некоторой скоростью V, равна M=6 кг. Грузы соединены неупругим невесомым ненатянутым вначале шнуром, таким, что после его натяжения скорости грузов выравниваются. Сколько процентов начальной кинетической энергии системы будет потеряно во время выравнивания скоростей тел?

41. Задание 29 № 7128

Два шарика, массы которых m=0,1 кг и M=0,2 кг, висят, соприкасаясь, на вертикальных нитях одинаковой длины I (см. рисунок). Левый шарик отклоняют на угол 90° и отпускают с начальной скоростью, равной нулю. В результате абсолютно неупругого удара шариков выделяется количество теплоты Q=1 Дж. Определите длину нитей I.


2018-09-24 5/7

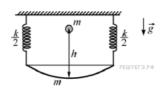
42. Задание 29 № 7160

Брусок массой $m_1 = 500$ г соскальзывает по наклонной плоскости с некоторой высоты h и, двигаясь по горизонтальной поверхности, сталкивается с неподвижным бруском массой $m_2 = 300$ г. Считая столкновение абсолютно неупругим, определите высоту h, если общая кинетическая энергия брусков после столкновения равна 2,5 Дж. Трением при движении пренебречь. Считать, что наклонная плоскость плавно переходит в горизонтальную.

43. Задание 29 № 7200

Однородный тонкий стержень массой m=1 кг одним концом шарнирно прикреплён к потолку, а другим концом опирается на массивную горизонтальную доску, образуя с ней угол $\alpha=30^\circ$. Под действием горизонтальной силы \vec{F} доска движется поступательно влево с постоянной скоростью (см. рисунок). Стержень при этом неподвижен. Найдите F, если коэффициент трения стержня по доске $\mu=0,2$. Трением доски по опоре и трением в шарнире пренебречь.

44. Задание 29 № 7369


Струя воды круглого сечения радиусом $r_0 = 1$ см начинает бить из шланга вверх со скоростью $v_0 = 20$ м/с. Найдите радиус струи r на высоте h = 16 м по вертикали от конца шланга. Трением и силами поверхностного натяжения пренебречь, считать скорость движения частиц воды по вертикали в любом поперечном сечении струи одинаковой для данного сечения, а сами частицы — находящимися в состоянии свободного падения в поле силы тяжести.

45. Задание 29 № 7401

Струя воды круглого сечения радиусом $r_0 = 1.1$ см начинает бить из шланга вверх со скоростью $v_0 = 15$ м/с. Найдите радиус струи r на высоте h = 10 м по вертикали от конца шланга. Трением и силами поверхностного натяжения пренебречь, считать скорость движения частиц воды по вертикали в любом поперечном сечении струи одинаковой для данного сечения, а сами частицы — находящимися в состоянии свободного падения в поле силы тяжести.

46. Задание 29 № 7642

К потолку на двух одинаковых лёгких пружинах общей жёсткостью $k=400~{\rm H/m}$ подвешена чашка массой $m=500~{\rm r.}$ С высоты $h=10~{\rm cm}$ в чашку падает и прилипает к ней груз такой же массой m (см. рис.). На какое максимальное расстояние H после этого опустится чашка относительно своего исходного положения? Потерями механической энергии пренебречь.

47. Задание 29 № 7716

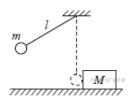
Маятник состоит из маленького груза массой M= 200 г, висящего на лёгкой нерастяжимой нити длиной L = 100 см. Он висит в состоянии покоя в вертикальном положении. В груз ударяется и прилипает к нему небольшое тело массой m = 100 г, летевшее в горизонтальном направлении. В результате возникает вращение маятника в вертикальной плоскости вокруг его точки подвеса, причём груз маятника всё время движется по окружности, делая полный оборот. Какова могла быть скорость тела до удара?

48. Задание 29 № 7748

Маятник состоит из маленького груза массой M=100 г, висящего на лёгкой нерастяжимой нити длиной L=50 см. Он висит в состоянии покоя в вертикальном положении. В груз ударяется и прилипает к нему небольшое тело массой m=20 г, летевшее в горизонтальном направлении. В результате возникает вращение маятника в вертикальной плоскости вокруг его точки подвеса, причём груз маятника всё время движется по окружности, делая полный оборот. Какова при этом могла быть скорость тела до удара?

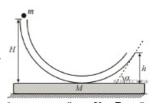
49. Задание 29 № 7909

К вертикальной пружине жесткостью 400 Н/м прикреплён груз. Система находится в равновесии. В определённый момент времени часть груза отцепляется, и пружина смещается на 3 см. Система снова приходит в равновесие. Определите массу отцепившейся части груза.

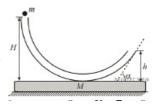

50. Задание 29 № 7970

Пластилиновый шарик массой $m=0.5~{\rm Kr}$, подвешенный на нити длиной $l=0.8~{\rm M}$, отводят в сторону и отпускают. В нижней точке качения шарик налетает на покоящийся брусок. В результате абсолютно неупругого соударения брусок приобретает скорость $u=0.4~{\rm M/c}$. Определите массу бруска M, если в момент столкновения натяжение нити было $T=8.6~{\rm H.}$

51. Задание 29 № 8023


2018-09-24 6/7

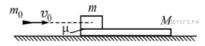
Маленький шарик массой m=0,3 кг подвешен на лёгкой нерастяжимой нити длиной l=0,9 м, которая разрывается при силе натяжения $T_0=6$ Н. Шарик отведён от положения равновесия (оно показано на рисунке пунктиром) и отпущен. Когда шарик проходит положение равновесия, нить обрывается, и шарик тут же абсолютно неупруго сталкивается с бруском массой M=1,5 кг, лежащим неподвижно на гладкой горизонтальной поверхности стола. Какова скорость u бруска после удара? Считать, что брусок после удара движется поступательно.


52. Задание 29 № 9072

На гладком горизонтальном столе покоится брусок с прикреплённой к нему гладкой изогнутой в вертикальной плоскости тонкой жёсткой трубкой (см. рисунок). Общая масса бруска с трубкой равна M=0.8 кг. В верхний конец вертикальной части трубки, находящийся на высоте H=70 см над бруском, опускают без начальной скорости маленький шарик массой m=50 г. Другой конец трубки наклонён к горизонту под углом $\alpha=30^\circ$ и находится на высоте h=20 см над бруском. Найдите модуль скорости, с которой будет двигаться брусок после того, как шарик вылетит из трубки.

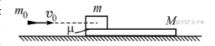
53. Задание 29 № 9227

На гладком горизонтальном столе покоится брусок с прикреплённой к нему гладкой изогнутой в вертикальной плоскости тонкой жёсткой трубкой (см. рисунок). Общая масса бруска с трубкой равна M=1 кг. В верхний конец вертикальной части трубки, находящийся на высоте H=1 м над бруском, опускают без начальной скорости маленький шарик массой m=100 г. Другой конец трубки наклонён к горизонту под углом $\alpha=45^\circ$ и находится на высоте h=30 см над бруском. Найдите модуль скорости, с которой будет двигаться брусок после того, как шарик вылетит из трубки.



54. Задание 29 № 10088

Небольшое тело массой M=0,99 кг лежит на вершине гладкой полусферы. В тело попадает пуля массой m=0,01 кг, летящая горизонтально со скоростью $v_0=100$ м/с, и застревает в нём. Пренебрегая смещением тела за время удара, определите радиус сферы, если высота, на которой тело оторвётся от поверхности полусферы, h=0,7 м. Высота отсчитывается от основания полусферы.


55. Задание 29 № 10238

На горизонтальном гладком столе лежит длинная доска массой $M=10~\rm kr$, а на её левом конце — деревянный брусок массой $m=1~\rm kr$ (см. рисунок). В брусок м попадает и прилипает к нему пластилиновый снаряд массой $m_0=200~\rm r$, летевший горизонтально по направлению вдоль доски со скоростью $V_0=10~\rm m/c$, после чего брусок скользит до остановки по шероховатой доске, не сваливаясь с неё. Какое количество теплоты Q выделится в этой системе в течение всего процесса?

56. Задание 29 № 10302

На горизонтальном гладком столе лежит длинная доска массой M=5 кг, а на её левом конце — деревянный брусок массой m=0,5 кг (см. рисунок). В брусок попадает и прилипает к нему пластилиновый снаряд массой $m_0=230$ г, летевший горизонтально по направлению вдоль доски со скоростью $V_0=200$ м/с, после чего брусок скользит до остановки по шероховатой доске, не сваливаясь с

неё. Какая часть начальной кинетической энергии «пули» перейдёт в этой системе в теплоту в течение всего процесса? Ответ выразите в процентах.

57. Задание 29 № 10434

Шарик массой m=400 г, подвешенный на невесомой нерастяжимой нити длиной I=80 см, отвели в сторону от положения равновесия и отпустили. Нить обрывается при силе натяжения $T_0=12\,$ Н. При прохождении положения равновесия нить оборвалась, и шарик абсолютно неупруго столкнулся с покоившимся на гладкой поверхности стола бруском. После удара брусок приобрел скорость $u=0.8\,$ м/с. Найдите массу бруска M.

58. Задание 29 № 10439

Снаряд массой 4 кг, летящий со скоростью 400 м/с в полёте разрывается на две равные части, одна из которых продолжает движение по направлению движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличивается за счёт энергии взрыва на величину $\Delta E = 0,5$ МДж. Найдите модуль скорости осколка, движущегося по направлению движения снаряда.

2018-09-24 7/7