Основной государственный экзамен по МАТЕМАТИКЕ

Тренировочный вариант № 256

Уровень 2

Инструкция по выполнению работы

Работа состоит из двух модулей: «Алгебра» и «Геометрия». Всего в работе 26 заданий. Модуль «Алгебра» содержит восемнадцать заданий: в части 1 — пятнадцать заданий; в части 2 — три задания. Модуль «Геометрия» содержит восемь заданий: в части 1 — пять заданий; в части 2 — три задания.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 7 и 15 записываются в виде одной цифры, которая соответствует номеру правильного ответа. Эту цифру запишите в поле ответа в тексте работы.

Для остальных заданий части 1 ответом является число или последовательность цифр, которые нужно записать в поле ответа в тексте работы. Если в ответе получена обыкновенная дробь, обратите её в десятичную.

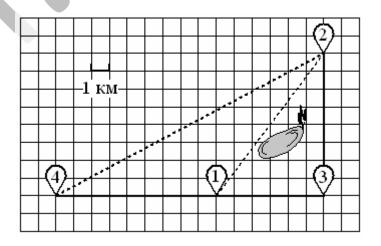
Решения заданий части 2 и ответы к ним запишите на отдельном листе или бланке. Задания можно выполнять в любом порядке, начиная с любого модуля. Текст задания переписывать не надо, необходимо только указать его номер.

Сначала выполняйте задания части 1. Начать советуем с тех заданий, которые вызывают у Вас меньше затруднений, затем переходите к другим заданиям. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

При выполнении части 1 все необходимые вычисления, преобразования и т.д. выполняйте в черновике. Записи в черновике не учитываются при оценивании работы. Если задание содержит рисунок, то на нём непосредственно в тексте работы можно выполнять необходимые Вам построения. Рекомендуем внимательно читать условие и проводить проверку полученного ответа.

При выполнении работы Вы можете воспользоваться справочными материалами.

Баллы, полученные Вами за верно выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.


Желаем успеха!

Часть 1

Ответами к заданиям 1 — 20 являются цифра, число или последовательность цифр, которые следует вписать в БЛАНК ОТВЕТОВ №1 справа от номера соответствующего задания, начиная с первой клеточки. Если ответом является последовательность цифр, то запишите её <u>без пробелов, запятых и других дополнительных символов.</u> Каждый символ пишите в отдельной клеточке в соответствии с приведенными в бланке образцами.

Модуль «Алгебра».

Прочитайте Внимательно текст и выполните задания 1-5

Никита и папа летом живут в деревне Лягушкино (см. рис. выше). В субботу они собираются съездить на велосипедах в село Вятское в спортивный магазин. Из деревни Лягушкино в село Вятское можно проехать по прямой лесной дорожке. Есть более длинный путь: по прямолинейному шоссе через деревню Куровка до деревни Марусино, где нужно повернуть под прямым углом налево на другое шоссе, ведущее в село Вятское. Есть и третий маршрут: в деревне Куровка можно свернуть на прямую тропинку в село Вятское, которая идёт мимо пруда.

Лесная дорожка и тропинка образуют с шоссе прямоугольные треугольники.

По шоссе Никита с папой едут со скоростью 25 км/ч, а по лесной дорожке и тропинке

— со скоростью 15 км/ч. На плане изображено взаимное расположение населённых пунктов, длина стороны каждой клетки равна 1 км.

1. Пользуясь описанием, определите, какими цифрами на плане обозначены населённые пункты. Заполните таблицу. В ответе запишите последовательность четырёх чисел без пробелов и других разделительных символов.

Населённые пункты	д. Марусино	с. Вятское	д. Куровка
Числа			

. Ответ:

2. Сколько километров проедут Никита с папой от деревни Лягушкино до села Вятское, если они поедут по шоссе через деревню Марусино?

3. Найдите расстояние от деревни Лягушкино до села Вятское по прямой. Ответ дайте в километрах.

4. Сколько минут затратят на дорогу из деревни Лягушкино в село Вятское Никита с папой, если они поедут по прямой лесной дорожке?

Ответ:

5. В таблице указана стоимость (в рублях) некоторых продуктов в четырёх магазинах, расположенных в деревне Лягушкино, селе Вятское, деревне Куровка и деревне Марусино.

Наименование	д. Лягушкино	с. Вятское	д. Куровка	д. Марусино
Молоко (1 л)	32	38	31	44
Хлеб (1 батон)	26	28	35	25
Сыр «Российский» (1 кг)	220	260	230	240
Говядина (1 кг)	360	350	330	400
Картофель (1 кг)	16	15	22	17

Никита с папой хотят купить 6 л молока, 4 батона хлеба и 3 кг говядины. В каком магазине такой набор продуктов будет стоить дешевле всего? В ответ запишите стоимость данного набора (в рублях) в этом магазине.

Ответ:

6. Найдите значение выражения $\frac{0,625 + \frac{1}{8} + 2^{0} - 2^{-1}}{\left(\sqrt{2} + 1\right)\left(\sqrt{2} - 1\right)}$

7. Пусть a , b , c , d — действительные неотрицательные числа. При этом a + b + c + d = 100. Найдите наибольшее значение выражения:

$$\sqrt[3]{\frac{a}{b+7}} + \sqrt[3]{\frac{b}{c+7}} + \sqrt[3]{\frac{c}{d+7}} + \sqrt[3]{\frac{d}{a+7}}$$

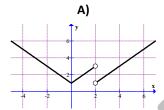
1)
$$\sqrt[3]{\frac{100}{7}}$$
 2) $\sqrt[3]{\frac{200}{7}}$

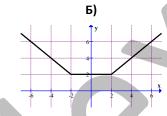
2)
$$\sqrt[3]{\frac{200}{7}}$$

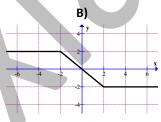
4)
$$\frac{8}{\sqrt[3]{5}}$$

8. Найдите значение выражения $(\sqrt[3]{10} - \sqrt[3]{7})(\sqrt[3]{100} + \sqrt[3]{70} + \sqrt[3]{49})$.

Ответ: ______.


9. Решите уравнение $(x+2)(x+1)-4\sqrt{x^2+3x+5}=-6$. Если корней несколько, запишите их в порядке возрастания без пробелов и других разделительных символов.


Ответ: ______.


10. Имеется 6 шариков, которые случайным образом разбрасываются по трём лункам. Найдите вероятность того, что в первую лунку попадёт ровно 2 шарика, во вторую — ровно один шарик и в третью — ровно три шарика. Ответ округлите до десятитысячных.

Ответ: ______.

11. Установите соответствие между графиками функций и функциями, соответствующими этим графикам. В ответе укажите последовательность цифр, соответствующих A, Б, B, без пробелов и других разделительных символов.

1)
$$y = \frac{|x-2|-|x+2|}{2}$$

2)
$$y = |x| - \frac{x-2}{|x-2|}$$

3)
$$y = \frac{|x+2| + |x-2|}{2}$$

Ответ: _____

12. Дано $a_1=1$, $a_k=\left[\sqrt{a_1+a_2+a_3+..+a_{k-1}}\,\right]$, где $\left[A\right]$ — целая часть числа A . Найдите a_{1000} .

Ответ: _____

13. Найдите значение выражения $(a+1)\cdot\left(\frac{2-a}{a^2+1-2a}-\frac{1-a(1-a)}{1-a}\cdot\frac{a}{a^3+1}\right)$ при $a=\sqrt{5}+1$.

Ответ:

14. Количество теплоты (в Дж), полученное однородным телом при нагревании, вычисляется по формуле $Q=cm\big(t_2-t_1\big)$, где c — удельная теплоёмкость (в Дж/(кг·К)), m — масса тела (в кг), t_1 — начальная температура тела (в К), а t_2 — конечная температура тела (в К). Пользуясь этой формулой, найдите Q, если $t_2=412$ К, c=300 Дж/(кг·К), m=3 кг и $t_1=407$ К.

Ответ:

15. Укажите решение системы неравенств $\begin{cases} |x|-|x+2| > \frac{1}{3} \\ \frac{\sqrt{49-x^2}}{3-x} < 1 \end{cases}$.

1) нет решений

2) (3; 7]

3) $\left[-7; \frac{3-\sqrt{89}}{2} \right]$

4) $\left(-\infty; -7\right] \cup \left(-\frac{7}{6}; 3\right)$

Ответ: _____

Модуль «Геометрия».

16. Около трапеции ABCD описана окружность радиуса 6. Центр этой окружности лежит на основании AD . Известно, что BC=4 . Найдите площадь S этой трапеции. В ответе укажите значение выражения $\frac{S}{\sqrt{2}}$.

Ответ:

17. В четырёхугольнике ABCD длины сторон AB и BC равны 1, угол ABC равен 100° , угол ADC равен 130° . Найдите BD .

Ответ: ______.

18. Внутри параллелограмма ABCD выбрана точка O , причём $\angle OAD = \angle OCD$, а $\angle OBC = 47^\circ$. Найдите градусную меру угла ODC .

Ответ: .

19. В треугольнике ABC известно, что AB = 4, BC = 5, $\angle ABC = 75^{\circ}$. Точка M лежит на стороне AC так, что $ABM = 45^{\circ}$. Найдите значение выражения $\frac{AM^2}{CM^2}$. Ответ:

20. Какие из следующих утверждений верны? Если верных утверждений несколько, запишите их номера без пробелов и других разделительных символов в порядке возрастания.

- 1) Диагональ параллелограмма не может совпадать с его высотой.
- 2) Если диагональ четырёхугольника делит его на два равных треугольника, то этот четырёхугольник не может быть трапецией.
- 3) Если три угла одного треугольника равны трём углам другого треугольника и у каждого из этих треугольников есть стороны 6 и 13, то эти треугольники равны.

Ответ: ______.

Часть 2

При выполнении заданий 21–26 используйте бланк ответов №2. Сначала укажите номер задания, а затем запишите его решение и ответ. Пишите чётко и разборчиво. Обращаем Ваше внимание на то, что записи в черновике не будут учитываться при оценивании работы.

Модуль «Алгебра».

- **21.** Решите уравнение $2x + \frac{4}{x}(2x 7)^3 \le \sqrt{x} + 7$.
- **22.** Найдите наибольшее натуральное число N, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы $20 \times 20\,$ найдутся два числа, стоящих в одной строке или в одном столбце, разность которых будет не меньше N.
- **23.** Постройте множество точек плоскости Ω , заданное уравнением x-y=1+xy . Найдите все значения a , при каждом из которых множество точек плоскости, заданное уравнением (y-a)x+(2a-3)y=a , имеет с множеством точек плоскости Ω ровно одну общую точку.

Модуль «Геометрия».

- **24.** Диагонали трапеции разбивают её на четыре треугольника. Площади двух таких треугольников, прилежащих к основаниям, равны 9 и 16. Найдите площадь трапеции.
- **25.** На прямой лежат точки X, Y, Z (именно в таком порядке). Треугольники XAB, YCB, ZCD правильные, причём вершины всех трёх треугольников ориентированы против часовой стрелки. Докажите, что прямые AC, BD и XY пересекаются в одной точке.
- **26.** Треугольник ABC со сторонами a, b, c вписан в окружность радиуса R и описан около окружности радиуса r. Найдите наибольшее значение выражения $\frac{ab+ac+bc}{\left(R+r\right)^2}\,.$