Основной государственный экзамен по МАТЕМАТИКЕ

Тренировочный вариант № 238

Уровень 2

Инструкция по выполнению работы

Работа состоит из двух модулей: «Алгебра» и «Геометрия». Всего в работе 26 заданий. Модуль «Алгебра» содержит восемнадцать заданий: в части 1 — пятнадцать заданий; в части 2 — три задания. Модуль «Геометрия» содержит восемь заданий: в части 1 — пять заданий; в части 2 — три задания.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 7 и 15 записываются в виде одной цифры, которая соответствует номеру правильного ответа. Эту цифру запишите в поле ответа в тексте работы.

Для остальных заданий части 1 ответом является число или последовательность цифр, которые нужно записать в поле ответа в тексте работы. Если в ответе получена обыкновенная дробь, обратите её в десятичную.

Решения заданий части 2 и ответы к ним запишите на отдельном листе или бланке. Задания можно выполнять в любом порядке, начиная с любого модуля. Текст задания переписывать не надо, необходимо только указать его номер.

Сначала выполняйте задания части 1. Начать советуем с тех заданий, которые вызывают у Вас меньше затруднений, затем переходите к другим заданиям. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

При выполнении части 1 все необходимые вычисления, преобразования и т.д. выполняйте в черновике. Записи в черновике не учитываются при оценивании работы. Если задание содержит рисунок, то на нём непосредственно в тексте работы можно выполнять необходимые Вам построения. Рекомендуем внимательно читать условие и проводить проверку полученного ответа.

При выполнении работы Вы можете воспользоваться справочными материалами.

Баллы, полученные Вами за верно выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Часть 1

Ответами к заданиям 1 — 20 являются цифра, число или последовательность цифр, которые следует вписать в БЛАНК ОТВЕТОВ №1 справа от номера соответствующего задания, начиная с первой клеточки. Если ответом является последовательность цифр, то запишите её <u>без пробелов, запятых и других дополнительных символов.</u> Каждый символ пишите в отдельной клеточке в соответствии с приведенными в бланке образцами.

Модуль «Алгебра».

Прочитайте Внимательно текст и выполните задания 1-5

На рисунке изображён план зоопарка. Сторона каждой клетки на плане равна 10 м.

У зоопарка имеется единственный вход. Справа от входа в зоопарк находится вольер с пятнистыми оленями. К нему примыкает вольер с кенгуру. В центре территории зоопарка расположено квадратное здание террариума и вольер с хищными птицами в форме восьмиугольника. Слева от входа в зоопарк находится вольер с попугаями. К нему примыкает вольер со страусами. Зебры занимают угловой вольер площадью 2700 кв. м рядом с вольером, где содержат хищных птиц. К вольеру с зебрами с одной стороны примыкает угловой вольер со слонами, а с другой стороны — вольер с

обезьянами. Между вольером со слонами и вольером со страусами находится вольер

 2
 3
 фффф

 4
 фф деревья

 3
 10 м

 3
 5

с бурыми медведями.

1. Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу. В ответе запишите последовательность четырёх цифр без пробелов и других дополнительных символов.

Животные	Бурый медведь	Хищные птицы	Обезьяны	Попугаи
Цифры				

Ответ: ______.

2. Территорию вольера с зебрами необходимо засеять газонной травой. В одной упаковке газонной травы содержится 14 кг семян, при этом для засеивания 4 кв. м земли необходимо 150 г семян. Какое минимальное количество упаковок газонной травы необходимо приобрести?

Ответ: ______.

3. Найдите площадь (в м²) земли, которую занимает вольер со слонами.

Ответ: .

4. Найдите расстояние (в метрах) от вольера со слонами до вольера с кенгуру (расстояние между двумя ближайшими точками по прямой). Ответ округлите до десятых.

Ответ: ______.

5. Предприниматель планирует арендовать на территории зоопарка один из двух павильонов для обустройства кафе. Цены аренды и стоимость оборудования, среднее число посетителей и средний чек (по статистике в аналогичных кафе) даны в таблице.

Павильон	Средняя цена аренды (руб./день)	Стоимость оборудования и монтажа (руб.)	Среднее число посетителей (чел./день)	Стоимость билета (руб./чел.)
Nº 1	1 500	2 657 500	51	250
Nº 2	1 000	1 960 000	38	200

Обдумав оба варианта, предприниматель решил арендовать павильон № 1. Через сколько дней работы кафе более высокая прибыльность при аренде павильона № 1, чем павильона № 2, компенсирует разность в стоимости аренды и оборудования?

Ответ: ______.

6. Найдите значение выражения $2\frac{1}{4}\cdot 1\frac{1}{9} + (3,25+5,5)\cdot \left(0,2-\frac{1}{70}\right)$.

Ответ:

7. Даны положительные числа a , b , c . Найдите наименьшее значение выражения:

$$\frac{a+b+c}{abc}\cdot\left(\left(a+b\right)^2+\left(a+b+4c\right)^2\right).$$

- **1)** 100
- **2)** 120
- **3)** 200
- **4)** невозможно определить

Ответ: ______.

8. Найдите значение выражения $\frac{2}{\sqrt{7}-\sqrt{3}}-\frac{1}{3-\sqrt{7}}+\frac{23}{7+\sqrt{3}}-2$.

Ответ: ______.

9. Решите уравнение |||x-3|-1|+2|-3|=1. Если корней несколько, запишите их в ответ без пробелов и других дополнительных символов в порядке возрастания.

Ответ: ______.

10. Имеется две урны: в первой 2 белых и 8 чёрных шаров; во второй 3 белых и 5 чёрных. Из каждой урны вынимается по шару. Найдите вероятность того, что оба шара будут белыми.

Ответ: ______.

11. Установите соответствие между функциями и областью определения этих функций. В ответе укажите последовательность цифр, соответствующих A, Б, В, без пробелов и других дополнительных символов.

A) B)
$$y = \frac{1}{|x| - 3}$$
 $y = \sqrt{-4x - 12}$ $y = \sqrt{x^2 (x - 5)}$

1)
$$\{0\} \cup [5; +\infty)$$
 2) $(-\infty; -3]$ **3)** $(-\infty; -3) \cup (3; +\infty)$

Ответ: .

12. Найдите первый член целочисленной арифметической прогрессии, у которой сумма первых шести членов отличается от суммы следующих шести членов менее чем на 450, а сумма первых пяти членов превышает более чем на 5 сумму любого другого набора различных членов этой прогрессии.

Ответ: _____

13. Найдите значение выражения
$$\left(\frac{a+b}{a-b} + \frac{a}{b}\right) \cdot \left(\frac{a}{b} - \frac{a-b}{a+b}\right) : \left(\frac{a^2+b^2}{a^2b-b^3}\right)^2$$
 при $a = 6\sqrt{5}$, $b = 2\sqrt{19}$.

Ответ: _____

14. Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч 2 . Скорость автомобиля вычисляется по формуле $v=\sqrt{2la}$, где l- пройденный автомобилем путь (в км). Пользуясь этой формулой, найдите ускорение (в км/ч 2), с которым должен двигаться автомобиль, чтобы, проехав 1,1 км, приобрести скорость 110 км/ч.

Ответ:

15. Укажите решение системы неравенств $\begin{cases} |3x+1| + \sqrt{3x+4} \le 3 \\ \sqrt{-x^2 - x + 6} + x \ge 2 \end{cases}$

2)
$$\left\{-\frac{4}{3}\right\} \cup \left[-1; \ 0\right]$$

3)
$$\left[-\frac{1}{2}; \ 0 \right]$$

4)
$$\left[-\frac{1}{2}; \ 2 \right]$$

Ответ:

Модуль «Геометрия».

16. В выпуклом четырёхугольнике ABCD точки E , F , H , G являются соответственно серединами отрезков AB , BC , CD , AD ; а O — точка пересечения отрезков EH и FG . Известно, что $EH=7\sqrt{57}$, $FG=8\sqrt{57}$, $\angle FOH=60^\circ$. Найдите меньшую диагональ четырёхугольника ABCD .

Ответ: ______.

17. Касательная к окружности (K — точка касания) параллельна хорде LM . Известно, что LM=6 , KM=5 . Найдите радиус окружности.

Ответ:

18. Найдите меньшее основание равнобедренной трапеции, если основание высоты, опущенной из вершины меньшего основания на большее, делит большее основание на отрезки, один из которых на 10 меньше другого.

Ответ: ______.

19. Дан прямоугольный треугольник ABC с прямым углом B и катетами AB=7 и BC=5. На сторонах треугольника AB, BC и AC вне треугольника построены квадраты AA_1B_1B , BB_2C_2C и ACC_3A_3 соответственно. Найдите площадь шестиугольника $A_1B_1B_2C_2C_3A_3$.

Ответ:			
OIDEI.			•

- **20.** Какие из следующих утверждений верны? Если верных утверждений несколько, запишите их номера без пробелов и других дополнительных символов в порядке возрастания.
 - 1) Уравнение y = 3x + b задаёт прямую y = 3x и множество всех прямых, ей параллельных.
 - 2) Уравнение $(x-3)^2 + (y+1)^2 = a^2$, задаёт точку (3; -1) и множество всех окружностей с центром в этой точке и радиусом |a|.
 - 3) Центрами всех окружностей, касающихся осей координат, служат точки прямой y=x, кроме начала координат.

Ответ:	
OIBEI.	

Часть 2

При выполнении заданий 21–26 используйте бланк ответов №2. Сначала укажите номер задания, а затем запишите его решение и ответ. Пишите чётко и разборчиво. Обращаем Ваше внимание на то, что записи в черновике не будут учитываться при оценивании работы.

Модуль «Алгебра».

21. Решите неравенство
$$\frac{3}{x-3} + \frac{5}{x-5} + \frac{17}{x-17} + \frac{19}{x-19} \ge x^2 - 11x - 4$$
.

- **22.** Три гонщика (A , потом B , потом C) стартуют с интервалом в 1 мин из одной точки кольцевого шоссе и двигаются в одном направлении с постоянными скоростями. Каждый гонщик затрачивает на круг более двух минут. Сделав три круга, гонщик A в первый раз догоняет B у точки старта, а ещё через три минуты он вторично обгоняет C . Гонщик B впервые догнал C также у точки старта, закончив 4 круга. Сколько минут тратит на круг гонщик A ?
- **23.** Постройте множество точек плоскости, заданное уравнением $y = 4 \left| y \frac{6}{x} \right| 2 \left| \frac{3}{x} 1 \right|$. Найдите все значения p, при каждом из которых прямая y = px имеет с данным множеством точек плоскости чётное количество общих точек.

Модуль «Геометрия».

- **24.** Центры четырёх кругов расположены в вершинах квадрата со стороной 5. Радиусы этих кругов равны 5. Найдите площадь общей части этих кругов.
- **25.** В треугольнике ABC точка M середина стороны BC , H точка пересечения высот треугольника, а O центр окружности, описанной около треугольника ABC . Точка $A_{\rm l}$ симметрична точке A относительно точки O . Докажите, что точка M лежит на отрезке $A_{\rm l}H$ и $HM=A_{\rm l}M$.
- **26.** Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу описанной окружности равно $\frac{5}{13}$. Найдите углы треугольника.