1) Исходя из определения предела, доказать, что функция $f(x) = x^3$ бесконечно малая при $x \to 0$.

Определение. Функция $y=f\left(x\right)$ называется бесконечно малой при $x \to x_0$, если $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ такое что $\forall \ x \colon \left| \ x - x_0 \right| < \delta$, выполняется неравенство $\left| \ f\left(x\right) \right| < \varepsilon$.

Возьмём произвольное $\varepsilon>0$ и найдём $\delta=\delta\left(\varepsilon\right)>0$ такое, что $\forall \ x\colon \left|\ x-0\ \right|<\delta$ выполняется неравенство $\left|\ x^3\ \right|<\varepsilon$ $\left|\ x\ \right|<\sqrt[3]{\varepsilon}$

Т.е., взяв $\delta = \sqrt[3]{\varepsilon}$, получим, что $\forall x : |x-0| < \delta$ выполняется неравенство $|x^3| < \varepsilon$.

Следовательно, функция $f(x) = x^3$ является бесконечно малой при $x \to 0$.

Итак,
$$\lim_{x \to 0} x^3 = \left(\lim_{x \to 0} x\right)^3 = 0^3 = 0$$
.

Литература:

1) Письменный Д.Т. "Конспект лекций по высшей математике", 2006, стр. 136.

2) Доказать, исходя из определения предела, что функция $f\left(x\right) = \frac{1}{x^2}$ бесконечно большая при $x \to 0$.

Определение. Функция $y=f\left(x\right)$ называется бесконечно большой при $x \to x_0$, если $\forall \ M>0 \quad \exists \ \delta>0$ такое, что $\forall \ x\colon \left|x-x_0\right|<\delta$, выполняется неравенство $\left|f\left(x\right)\right|>M$.

Возьмём произвольное M>0 и найдём $\delta\!=\!\delta\!\left(M\right)\!>\!0$ такое, что $\forall\;x\colon \big|x\!-\!0\big|\!<\!\delta$ выполняется неравенство

$$\left| \frac{1}{x^2} \right| > M$$

$$\left| x^2 \right| < \frac{1}{M}$$

$$\left| x \right| < \frac{1}{\sqrt{M}}$$

Т.е., взяв $\delta = \frac{1}{\sqrt{M}}$, получим, что $\forall x : |x-0| < \delta$ выполняется неравенство $\left|\frac{1}{x^2}\right| > M$

Следовательно, функция $f(x) = \frac{1}{x^2}$ является бесконечно большой при $x \to 0$.

Литература:

1) Письменный Д.Т. "Конспект лекций по высшей математике", 2006, стр. 135.

3) Доказать, что функция $f\left(x\right) = \frac{\sin x}{x}$ является бесконечно малой при $x \to +\infty$.

Для каких значений x выполнено неравенство $|f(x)| < \varepsilon$, где $\varepsilon > 0$?

Провести расчёт для $\varepsilon = 0,1$; $\varepsilon = 0,01$; $\varepsilon = 0,001$.

Определение. Функция $y=f\left(x\right)$ называется бесконечно малой при $x \to +\infty$, если $\lim_{x \to +\infty} f\left(x\right) = 0$.

Определение. Функция $y=f\left(x\right)$ называется бесконечно малой при $x \to +\infty$, если $\forall \ \varepsilon > 0 \quad \exists \ M > 0$ такое, что $\forall \ x \colon \ x > M$, выполняется неравенство $\left| \ f\left(x\right) \right| < \varepsilon$.

Теорема. Произведение ограниченной функции на бесконечно малую функцию есть функция бесконечно малая.

Возьмём произвольное $\varepsilon > 0$ и найдём $M = M\left(\varepsilon\right) > 0$ такое, что $\forall x \colon x > M$ выполняется неравенство $\left|\frac{\sin x}{x}\right| < \varepsilon$.

 $-1 \le \sin x \le 1$, и для оценки граничного числа M возьмём значение $\max |\sin x| = 1$, определяющее наибольшее значение M:

$$\left| rac{1}{x}
ight| < arepsilon$$
 $x > rac{1}{arepsilon}$ (модуль убран, т.к. $x > 0$)

Т.е., взяв $M=\frac{1}{\varepsilon}$, видим, что $\forall x\colon x>M$ выполняется неравенство $\left|\frac{\sin x}{x}\right|<\varepsilon$.

Следовательно, функция $f\left(x\right)=\dfrac{\sin x}{x}$ является бесконечно малой при $x \to +\infty$.

▶ Неравенство $\left|\frac{\sin x}{x}\right| < \varepsilon$, где $\varepsilon > 0$, выполняется для значений x , удовлетворяющих неравенству $x > \frac{1}{\varepsilon}$.

Проведём расчёт для указанных значений $\, arepsilon \, \, (M = rac{1}{arepsilon}) :$

\mathcal{E}	0,1	0,01	0,001
M	10	100	1000

Неравенство
$$\left| \frac{\sin x}{x} \right| < \varepsilon$$
 выполняется:

при
$$\varepsilon = 0,1$$
 для $x > 10$;

при
$$\varepsilon = 0,01$$
 для $x > 100$;

при
$$\varepsilon = 0,001$$
 для $x > 1000$.

Литература:

1) Письменный Д.Т. "Конспект лекций по высшей математике", 2006, стр. 135, стр. 139 (пример 17.1).

4) Доказать, что предел суммы двух функций при $x \to x_0 + 0$ равен сумме их пределов.

Теорема (о связи функции, её предела и б.м.ф.). Если функция f(x) имеет при $x \to x_0$ предел, равный A, то её можно представить как сумму числа A и бесконечно малой функции $\alpha(x)$ при $x \to x_0$, т.е. если $\lim_{x \to x_0} f(x) = A$, то $f(x) = A + \alpha(x)$.

Теорема (обратная). Если функцию $f\left(x\right)$ можно представить в виде суммы числа A и бесконечно малой функции $\alpha(x)$ при $x \to x_0$, то число A является пределом функции $f\left(x\right)$ при $x \to x_0$, т.е. если $f\left(x\right) = A + \alpha(x)$, то $\lim_{x \to x_0} f\left(x\right) = A$.

Пусть $\lim_{x \to x_0 + 0} f(x) = A$, $\lim_{x \to x_0 + 0} \varphi(x) = B$. Тогда для некоторой окрестности справа от точки x_0 (по теореме о связи функции, её предела и б.м.ф.) можно записать $f(x) = A + \alpha(x)$ и $\varphi(x) = B + \beta(x)$. Следовательно, $f(x) + \varphi(x) = A + B + (\alpha(x) + \beta(x))$. Здесь $\alpha(x) + \beta(x)$ - бесконечно малая функция как сумма бесконечно малых функций. Поэтому (в соответствии с обратной теоремой) $\lim_{x \to x_0 + 0} \left(f(x) + \varphi(x) \right) = A + B$, т.е. $\lim_{x \to x_0 + 0} \left(f(x) + \varphi(x) \right) = \lim_{x \to x_0 + 0} f(x) + \lim_{x \to x_0 + 0} \varphi(x)$.

В случае разности функций доказательство аналогично.

Теорема справедлива для алгебраической суммы любого конечного числа функций.

Литература:

1) Письменный Д.Т. "Конспект лекций по высшей математике", 2006, стр. 141.

5) Доказать, что предел произведения двух функций при $x \to x_0 - 0$ равен произведению их пределов.

Пусть $\lim_{x \to x_0 - 0} f(x) = A$, $\lim_{x \to x_0 - 0} \varphi(x) = B$. Тогда для некоторой окрестности слева от точки x_0 (по теореме о

связи функции, её предела и б.м.ф.) можно записать $f(x) = A + \alpha(x)$ и $\varphi(x) = B + \beta(x)$, где $\alpha(x)$ и $\beta(x)$ - бесконечно малые функции. Следовательно,

 $f(x)\cdot \varphi(x) = (A+\alpha(x))\cdot (B+\beta(x)) = AB + (A\cdot\beta(x)+B\cdot\alpha(x)+\alpha(x)\cdot\beta(x))$. Выражение в скобках есть бесконечно малая функция. Поэтому (в соответствии с обратной теоремой) $\lim_{x\to x_0=0} f(x)\cdot \varphi(x) = A\cdot B$, т.е.

$$\lim_{x \to x_0 - 0} f(x) \cdot \varphi(x) = \lim_{x \to x_0 - 0} f(x) \cdot \lim_{x \to x_0 - 0} \varphi(x).$$

Теорема справедлива для произведения любого конечного числа функций.

Литература:

1) Письменный Д.Т. "Конспект лекций по высшей математике", 2006, стр. 141.

6) Доказать, что если функция f(x) бесконечно малая при $x \to -\infty$, то функция $\frac{1}{f(x)}$ - бесконечно большая.

Определение. Функция y = f(x) называется бесконечно большой при $x \to -\infty$, если $\lim_{x \to -\infty} \left| \frac{1}{f(x)} \right| = 0$.

Определение. Функция $y = f\left(x\right)$ называется бесконечно большой при $x \to -\infty$, если $\forall \ M > 0$ $\exists \ N = N\left(M\right) < 0$, что $\ \forall \ x : \ x < N$ выполняется неравенство $\left| \ f\left(x\right) \right| > M$.

По определению бесконечно малой функции $f\left(x\right)$ при $x \to -\infty$: $\forall \, \varepsilon > 0 \quad \exists \, M = M\left(\varepsilon\right) < 0$, что $\forall \, x : \, x < M \,$ выполняется неравенство $\left| \, f\left(x\right) \right| < \varepsilon$.

Или
$$\left| \frac{1}{f(x)} \right| > \frac{1}{\varepsilon}$$
 .

Данное определение равносильно утверждению: для любого $\frac{1}{\varepsilon} > 0 \quad \exists \, N = M \left(\frac{1}{\varepsilon}\right) < 0 \;\; , \;$ что $\; \forall \, x: \; x < N \;\;$ $\;\; \mid \;\; 1 \;\; \mid \;\; 1 \;\;$

выполняется неравенство $\left| \frac{1}{f(x)} \right| > \frac{1}{\varepsilon}$.

Это утверждение соответствует определению бесконечно большой функции, где $M=\frac{1}{\mathcal{E}}$; следовательно, функция $\frac{1}{f(x)}$ - бесконечно большая.

Литература:

1) Письменный Д.Т. "Конспект лекций по высшей математике", 2006, стр. 139.