Добавка-2

- 1. В очереди за пирожками стоят 2n ребят. Рублевые монеты у 50% из них. У остальных только по 50 коп. Цена пирожка 50 коп. Каждый берет 1 пирожок. Изначально у продавца нет денег. Какова вероятность, что все успешно купят пирожок?
- **2.** Докажите, что если коэффициенты многочлена f взаимнопросты в совокупности и коэффициенты многочлена g взаимнопросты в совокупности, то коэффициенты многочлена fg взаимнопросты в совокупности
- **3.** На окружности отмечены 2n точек, найдите количество способов соединить их непересекающимися хордами, так, чтобы из каждой точки выходила ровно одна хорда.
- **4.** Докажите, что при иррациональном отношении α/β множество точек $(\{t\alpha\}, \{t\beta\}), t \in \mathbb{R}$ плотно в квадрате $[0,1] \times [0,1].$

Напомним, что набор вещественных чисел x_1, \ldots, x_s линейно независимым над \mathbb{Q} , если равенство $\sum_{i=1}^s \alpha_i x_i = 0$, $\alpha_i \in \mathbb{Q}$ влечет равенство нулю всех α_i . (Например, независимость 1 и α означает иррациональность α).

- **5.** Пусть $1, \alpha, \beta$ линейно независимы над \mathbb{Q} . Докажите, что для любого n число $\{n\alpha\}/\{n\beta\}$ иррационально.
- **6** (Двумерная теорема Кронекера). Пусть $1, \alpha, \beta$ линейно независимы над \mathbb{Q} . Докажите, что множество точек $(\{n\alpha\}, \{n\beta\})$ плотно в квадрате $[0, 1] \times [0, 1]$
- 7. Докажите, что если многочлен неприводим как многочлен из $\mathbb{Z}_p[x]$, то он неприводим и как многочлен с целыми коэффициентами.
- 8 (Лемма Гаусса). Докажите, что многочлен с целыми коэффициентами неприводим над $\mathbb{Z}[x]$ тогда и только тогда, когда он неприводим над $\mathbb{Q}[x]$
- **9** (**Критерий Эйзенштейна**). Пусть $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in \mathbb{Z}[x]$, причем для некоторого простого p коэффициент a_n не делится на p, коэффициенты a_0, \ldots, a_{n-1} делятся на p, но коэффициент a_0 не делится на p^2 . Тогда f неприводим над \mathbb{Z} .