Остатки

группа «Воче»

Определения и Обозначения:

- 1) $b \mid a$ означает, что b делит a, это то же самое, что a делится на b
- 2) $a \equiv b \pmod{m}$ означает, что $m \mid (a b)$
- 3) любое число a мы можем поделить с остатком на число m и получить $a = k \cdot m + r$, где $0 \le r < m$ б r остаток от деления на m. Тогда $a \equiv r \pmod{m}$.

Задачи

- 1. Найдите такое x, что
 - a) $5x \equiv 3 \pmod{7}$
 - 6) $33x \equiv 2 \pmod{5}$
 - B) $12345x \equiv 54321 (mod \ 11)$
- 2. Найдите такое x, при котором одновременно выполняется $3x \equiv 1 (mod 5), 7x \equiv 3 (mod 6)$
- 3. Пусть $N_1=k_1\cdot 3+r_1$, $N_2=k_2\cdot 3+r_2$ (мы поделили их на 3 с остатком, по пункту (3) $N_1\equiv r_1(mod~3),\,N_2\equiv r_2(mod~3)$). Докажите, что $N_1\cdot N_2\equiv r_1\cdot r_2(mod~3)$
- 4. Пусть для чисел a,b,c,d выполнено следующее: $a \equiv b \pmod{m}$ и $c \equiv d \pmod{m}$. Докажите, что $a \pm c \equiv b \pm d \pmod{m}$
- 5. Пусть ля чисел a,b выполнено следующее: $a\equiv b \pmod{m}$. Докажите, что $a\cdot n\equiv b\cdot n \pmod{m}$
- 6. Пусть $a \cdot n \equiv b \cdot n \pmod{m}$, при этом (n, m) = 1 (то есть n, m взаимно просты). Докажите, что тогда $a \equiv b \pmod{m}$.
- 7. Пусть a,b_1,b_2 взаимно просты с m, и b_1 и b_2 имеют разные остатки по модулю m. Докажите, что тогда $a\cdot b_1$ и $a\cdot b_2$ взаимно просты с m, а также $a\cdot b_1$ и $a\cdot b_2$ имеют разные остатки по модулю m