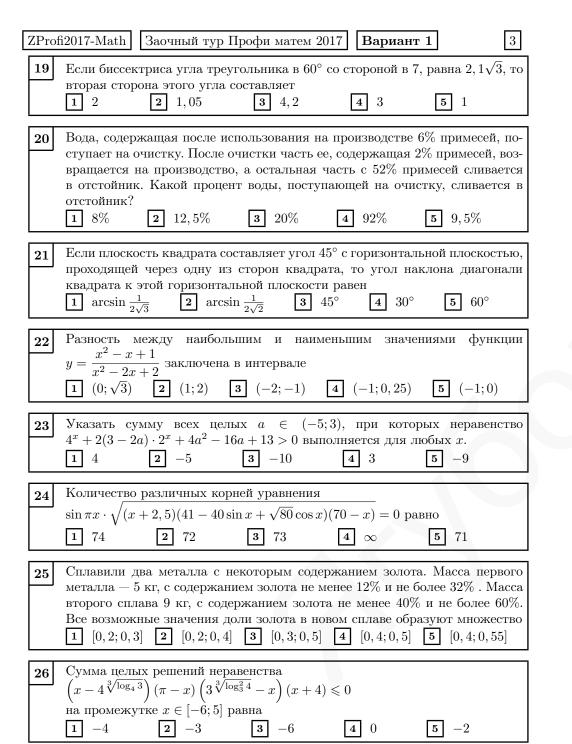

ZProf.	12017-Math Заочный тур Профи матем 2017 Вариант 1 1
1	Скорость поезда на некотором участке пути была увеличена с 100 км/ч до 125 км/ч . Время, затраченное на этот участок, уменьшилось против прежнего на
2	Укажите наименьшее из чисел: $\boxed{1} \ {\rm arctg} \ 0, 25 \ \boxed{2} \ {\rm arcctg} \ 1, 5\pi \ \boxed{3} \ {\rm arctg} \ \frac{2}{9} \ \boxed{4} \ {\rm arcctg} \ 3 \ \boxed{5} \ {\rm arctg} \ 0, 3$
3	Среднее арифметическое всех чисел $n \in Z$, при которых дробь $\cfrac{2n^2+n+1}{n+2}$ является также целым числом, равно $\boxed{1 -2 2 -1,5 3 5 4 1,5 5 2}$
4	Все решения уравнения $\lg x \cdot \operatorname{ctg} x + \sin 4x = 1$ определяются формулой $(n \in Z)$
5	Разность координат $x-y$ точки пересечения графиков функции $y=\frac{1}{2,13}(28,87-7,87x)$ и $y=\frac{1}{7,87}(23,13-2,13x)$ равна $1 3 2 -1 3 1 4 -3 5$ графики не пересекаются
6	Сумма нулей функции $y=(x^3-3x^2-4x)-\sqrt{\cos{(\pi x)}-1}$ равна 1 4 2 6 3 2 4 1 5 3
7	Значение выражения $\sqrt{2a+1} - \sqrt{2a} + \frac{1}{\sqrt{2a} - \sqrt{2a-1}}$ при $a > \frac{1}{2}$ равно
	1 $\sqrt{2a+1} - \sqrt{2a-1}$ 2 $4a$ 3 $\frac{2}{\sqrt{2a+1} - \sqrt{2a-1}}$
	4 $2\sqrt{2a}$ 5 $\sqrt{2a-1}-\sqrt{2a+1}$
8	Значение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}}$ равно
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0	α α π

	$(n \in Z)$ $\boxed{1} \frac{\pi}{2}n$ $\boxed{2} \pi n$ $\boxed{3} \frac{\pi}{4} + \frac{\pi}{2}n$ $\boxed{4} \pm \frac{\pi}{4} + 2\pi n$ $\boxed{5} \frac{\pi}{4}n$
5	Разность координат $x-y$ точки пересечения графиков функции $y=\frac{1}{2,13}(28,87-7,87x)$ и $y=\frac{1}{7,87}(23,13-2,13x)$ равна 1 3 2 -1 3 1 4 -3 5 графики не пересекаются
6	Сумма нулей функции $y=(x^3-3x^2-4x)-\sqrt{\cos{(\pi x)}-1}$ равна 1 4 2 6 3 2 4 1 5 3
7	Значение выражения $\sqrt{2a+1}-\sqrt{2a}+\frac{1}{\sqrt{2a}-\sqrt{2a-1}}$ при $a>\frac{1}{2}$ равно 1 $\sqrt{2a+1}-\sqrt{2a-1}$ 2 $4a$ 3 $\frac{2}{\sqrt{2a+1}-\sqrt{2a-1}}$ 4 $2\sqrt{2a}$ 5 $\sqrt{2a-1}-\sqrt{2a+1}$
8	Значение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}}$ равно 1 2 2 $\sqrt[4]{2}$ 3 $\sqrt[3]{2}$ 4 $2\sqrt{2}$ 5 $\sqrt{2}$
9	Если $\operatorname{tg} \frac{\alpha}{2} = -\frac{\pi}{4}$, то угол α оканчивается в 1 III четверти 2 IV четверти 3 однозначно четверть указать нельзя 4 I четверти 5 II четверти

 $5 -2\sin^{-2} 1$


 $\begin{bmatrix} \mathbf{4} \end{bmatrix} 0.5 \sin^{-2} 1$

4 860 рублей

В марте месячный проездной билет в городе стоил 660 рублей. Решением 15 гордумы стоимость проездного в апреле увеличилась, что привело к снижению числа проданных билетов на 23%, а выручка от их продажи тем не менее увеличилась на 5%. Сколько стал стоить проездной билет в апреле? **2** 792 рублей **3** 780 рублей 1 900 рублей

5 935 рублей

- Угловой коэффициент касательной к графику функции $f(x) = x - \cos{(x-1)^2} - \sin^2{x}$ в точке с абсциссой $x_0 = 1$ равен $1 \sin 2$ $3 1 - \sin 2$ $4 1 + \sin 2$ **5** 0 $|\mathbf{2}| - \sin 2$
- Если для любого x выполняется соотношение $f(2x-1) = 1-4x^2$, то разность между наибольшим и наименьшим значениями f(x) при $x \in [-3;0]$ равна **1** 3 **2** 1 **3** 4 **5** 5
- Система уравнений 2x + ay = 3 и (a + 2)x + 4y = -3 имеет бесконечное множество решений при a, равном $\boxed{1}$ $-\cos^{-2}30^{\circ}$ $\boxed{2}$ $-\cos^{-2}45^{\circ}$ $\boxed{3}$ $\cos 180^{\circ}$ $\boxed{4}$ $\sin 90^{\circ}$ $\boxed{5}$ $-8\cos^2 135^{\circ}$

 $(a-x^2)(a+x-12) \le 0$ выполняется для любых $x \in [-2;1]$

 3∞

4 14

5 60

2 15

ZPro	fi2017-Math Заочный тур Профи матем 2017 Вариант 2	
1	Скорость поезда на некотором участке пути была увеличена с 70 км/ч до $100~{\rm km/v}$. Время, затраченное на этот участок, уменьшилось против преж-	
	него на $\boxed{1}$ 20% $\boxed{2}$ 35% $\boxed{3}$ 30% $\boxed{4}$ 25% $\boxed{5}$ $\frac{100}{3}$ %	[
2	Укажите наименьшее из чисел: 1 $\arctan 3$ 2 $\arctan 60, 33$ 3 $\arctan 60, 33$ 4 $\arctan 60, 32$ 5 $\arctan 60, 32$ 5 $\arctan 60, 32$ 6 $\rightarrow 32$ 7	
		ſ
3	Среднее арифметическое всех чисел $n \in \mathbb{Z}$, при которых дробь $\frac{2n^2 + 7n + 1}{n + 2}$ является также целым числом, равно $\boxed{1}$ 5 $\boxed{2}$ $-1,5$ $\boxed{3}$ $1,5$ $\boxed{4}$ 2 $\boxed{5}$ -2	
. 1	Dec nowawa manyawa sin 2n + 1 tan atau amayawa hanyawa	ŀ
4	Все решения уравнения $\sin 3x + 1 = \operatorname{tg} x \cdot \operatorname{ctg} x$ определяются формулой $(n \in \mathbb{Z})$	
	$\boxed{1} \pm \frac{\pi}{3} + \pi n \qquad \boxed{2} (-1)^n \cdot \frac{\pi}{3} + \pi n \qquad \boxed{3} \frac{\pi}{6} + \frac{\pi}{3} n \qquad \boxed{4} \frac{\pi}{3} n \qquad \boxed{5} \frac{\pi}{2} n$	j
5	Сумма координат точки пересечения прямых $y = -\frac{3,3}{4,7}x - \frac{9,2}{4,7}$ и	l
	$y = -\frac{4.7}{3.3}x - \frac{6.8}{3.3}$ равна	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ł
6	Сумма нулей функции $y = (x^3 - 3x^2 + 2x) - \sqrt{\lg(\cos(\pi x))}$ равна	
	1 3 2 2 3 1 4 6 5 4	
		ļ
7	Значение выражения $\sqrt{2a} - \sqrt{2a-1} + \frac{1}{\sqrt{2a} + \sqrt{2a+1}}$ при $a > \frac{1}{2}$ равно	
		Ī
	1 $2\sqrt{2a}$ 2 $\sqrt{2a-1}-\sqrt{2a+1}$ 3 $4a$	
	4 $\sqrt{2a+1} - \sqrt{2a-1}$ 5 $\frac{2}{\sqrt{2a+1} - \sqrt{2a-1}}$	Ī
	$\sqrt{2u+1}-\sqrt{2u-1}$	-
8		
О	Значение выражения $\sqrt{3\sqrt{3\sqrt{3}}}$ равно	[
	1 $2\sqrt{3}$ 2 9 3 $3\sqrt{3}$ 4 3 5 $\sqrt{6}$	
9	Если $\operatorname{ctg} \frac{\alpha}{2} = \frac{\pi}{3}$, то угол α оканчивается в	إ
	1 IV четверти 2 однозначно четверть указать нельзя 3 I четверти 4 III четверти 5 II четверти	
		-

ZP	rofi2017-Math Заочный тур Профи матем 2017 Вариант 2
10	Отрицательным среди приведенных чисел является $\begin{array}{ c c c c c c c c c }\hline 1 & \log_\pi\log_4\sqrt{17} & \textbf{2} & \log_{0,5}\log_{0,5}0,2 & \textbf{3} & \log_{0,2}\log_{25}5 \\\hline \textbf{4} & \lg\log_{0,05}0,005 & \textbf{5} & \log_3\log_23 \\\hline \end{array}$
11	В равнобедренной трапеции с высотой $4-2\sqrt{3}$ и углом $\pi/6$ между ее диагоналями, противолежащим боковой стороне, средняя линия равна 1 4 2 $\sqrt{3}$ 5 2
12	Выражение $\frac{\cos{(29,5\pi+2)}\cdot\cot{(19,5\pi-1)}}{\sin{(\sqrt{1-4\pi+4\pi^2})}\cdot\cos{(\sqrt{16\pi^2+8\pi+1})}}$ равно $\boxed{1 - \sin^{-1}2} \ \boxed{2 \ \sin^{-1}2} \ \boxed{3 \ -2 \operatorname{tg}1} \ \boxed{4 \ 2 \cos^{-2}1} \ \boxed{5 \ \sin^{-1}1 \cdot \cos^{-1}1}$
13	Если $\alpha=352^{\circ}30', \beta=52^{\circ}30',$ то $\sin\alpha\cdot\cos\beta$ равно $\boxed{1} \frac{\sqrt{3}-\sqrt{2}}{4} \boxed{2} \frac{\sqrt{3}+\sqrt{2}}{4} \boxed{3} \frac{\sqrt{2}-1}{4} \boxed{4} \frac{\sqrt{2}-\sqrt{3}}{4} \boxed{5} \frac{\sqrt{2}+1}{4}$
14	Найдите сумму всех целых $a \in (-6;7)$, при которых уравнение $(x-a)\lg(4x-x^2-2)=0$ имеет два различных корня 1 3 2 4 4 5 5
15	В марте месячный проездной билет в городе стоил 660 рублей. Решением гордумы стоимость проездного в апреле увеличилась, что привело к снижению числа проданных билетов на 12%, а выручка от их продажи тем не менее увеличилась на 4%. Сколько стал стоить проездной билет в апреле? 1 900 рублей 2 780 рублей 3 792 рублей 4 935 рублей 5 860 рублей
16	Угловой коэффициент касательной к графику функции $f(x) = \sin{(x-1)^2} + \cos^2{x}$ в точке с абсциссой $x_0 = 1$ равен $\boxed{1} \ 0 \qquad \boxed{2} \ \sin{2} \qquad \boxed{3} \ 1 - \sin{2} \qquad \boxed{4} \ -\sin{2} \qquad \boxed{5} \ 1 + \sin{2}$
17	Если для любого x выполняется соотношение $f(2x+1)=4x^2+1$, то разность между наибольшим и наименьшим значениями $f(x)$ при $x\in[0;2]$ равна

1

Система уравнений x + ay = 1,5 и (a + 1)x + 2y = -1,5 имеет бесконечное

 $\boxed{1} - \cos^{-2} 45^{\circ} \boxed{2} 2 \cos^{2} 135^{\circ} \boxed{3} \sin 90^{\circ} \boxed{4} \cos 180^{\circ} \boxed{5} - \cos^{-2} 30^{\circ}$

Если биссектриса угла треугольника в 120° со стороной в 7, равна 2,1, то

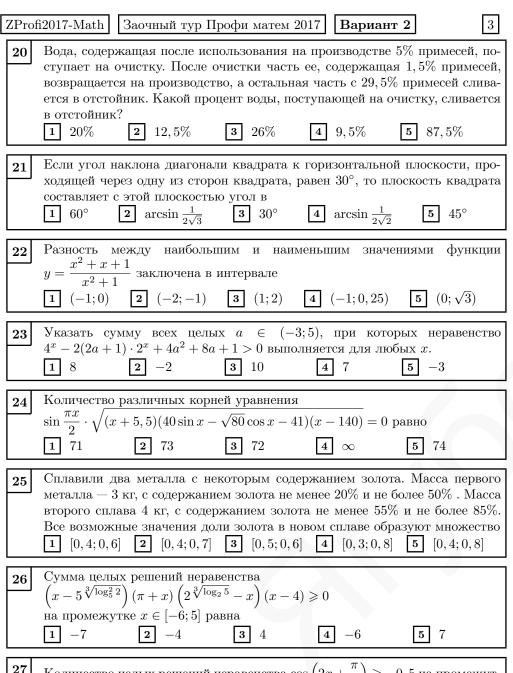
5

3

1

множество решений при a, равном

вторая сторона этого угла составляет


4, 2

0

2

3

1,05

Количество целых решений неравенства $\cos\left(2x+\frac{\pi}{3}\right) \geqslant -0,5$ на промежутке $[0; 2\pi]$ равно **1** 5 **2** 6 3 7 4 3 **5** 4

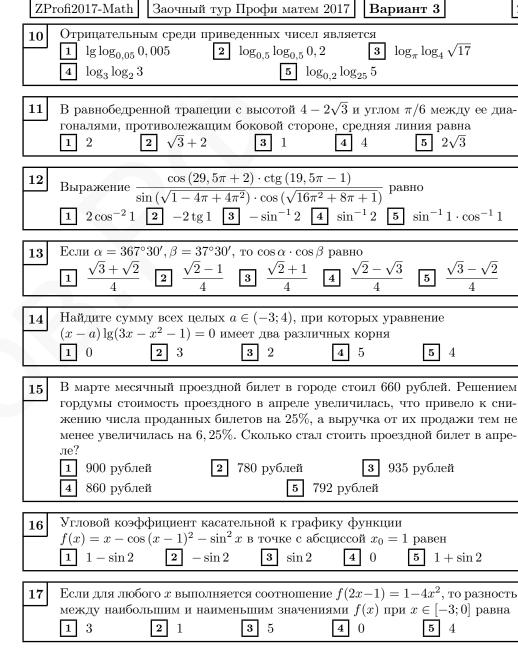
ZProfi2017-Math Заочный тур Профи матем 2017 Вариант 2

Решением неравенства $\sqrt{x+1+a} \ge x+1$ является отрезок длины 4 при значении параметра a, равном **1** 1 -1**3** 6 **5** 2

Максимальная сумма x + y среди всех пар целых чисел (x; y), удовлетворяющих уравнению $\sqrt{2x+2-2y} + \sqrt{4y-x-4} = 3\sqrt{8-x-2y}$, равна

3 3

Найдите сумму всех целых значений а, для которых неравенство $(a-x^2)(a-x-12) \le 0$ выполняется для любых $x \in [-1;2]$


1 60 2∞ **3** 14 4 9 **5** 11

ZProf	fi2017-Math Заочный тур Профи матем 2017 Вариант 3
1	Скорость поезда на некотором участке пути была увеличена с 90 км/ч до $135\ {\rm кm/ч}$. Время, затраченное на этот участок, уменьшилось против преж-
	него на $\boxed{ 1 \ 30\% } \qquad \boxed{ 2 \ 25\% } \qquad \boxed{ 3 \ 20\% } \qquad \boxed{ 4 \ \frac{100}{3}\% } \qquad \boxed{ 5 \ 35\% }$
2	Укажите наименьшее из чисел:
3	Среднее арифметическое всех чисел $n \in \mathbb{Z}$, при которых дробь $\frac{3n^2+6n+1}{n+3}$ является также целым числом, равно 1 2 2 -3 3 -1,5 4 4 5 -2
4	Все решения уравнения $\sin 4x + 1 = \operatorname{tg} 2x \cdot \operatorname{ctg} 2x$ определяются формулой $(n \in Z)$ 1 πn 2 $\frac{\pi}{4}n$ 3 решений нет 4 $\frac{\pi}{2}n$ 5 $\frac{\pi}{4} + \frac{\pi}{2}n$
5	Сумма координат точки пересечения прямых $y=-\frac{3.7}{1,3}x+\frac{2.8}{1,3}$ и $y=-\frac{1.3}{3.7}x+\frac{7.2}{3.7}$ равна $\boxed{1\ -2} \qquad \boxed{2\ 1} \qquad \boxed{3\ -1} \qquad \boxed{4\ 2} \qquad \boxed{5\ 0}$
6	Сумма нулей функции $y=(x^3-3x^2-4x)-\sqrt{\cos{(\pi x)}-1}$ равна 1 1 2 6 3 2 4 4 5 3
7	Значение выражения $\frac{1}{\sqrt{2a+1}+\sqrt{2a}}-\frac{1}{\sqrt{2a-1}-\sqrt{2a}}$ при $a>\frac{1}{2}$ равно $\boxed{1}$ $4a$ $\boxed{2}$ $\frac{-2}{\sqrt{2a-1}-\sqrt{2a+1}}$ $\boxed{3}$ $\sqrt{2a+1}-\sqrt{2a-1}$ $\boxed{4}$ $2\sqrt{2a}$ $\boxed{5}$ $\sqrt{2a-1}-\sqrt{2a+1}$
8	Значение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}}$ равно 1 $\sqrt[3]{2}$ 2 2 3 $\sqrt[4]{2}$ 4 $\sqrt{2}$ 5 $2\sqrt{2}$
9	Если $ctg\frac{\alpha}{2}=-\frac{\pi}{2}$, то угол α оканчивается в

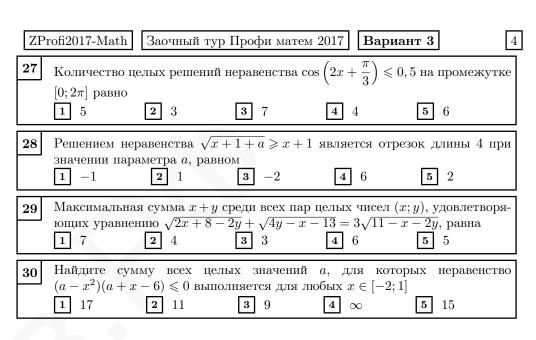
III четверти **2** II четверти **3** однозначно четверть указать нельзя

5 І четверти

IV четверти

множество решений при a, равном

Система уравнений 2x + ay = 3 и (a + 2)x + 4y = -3 имеет бесконечное

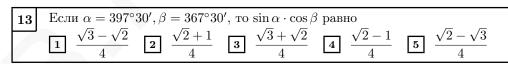

 $-8\cos^2 135^{\circ}$ **2** $-\cos^{-2} 30^{\circ}$ **3** $\sin 90^{\circ}$ **4** $-\cos^{-2} 45^{\circ}$ **5** $\cos 180^{\circ}$

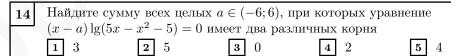
ZProf	fi2017-Math Заочный тур Профи матем 2017 Вариант 3
19	Если биссектриса угла треугольника в 60° со стороной в 7, равна $2, 1\sqrt{3}$, то вторая сторона этого угла составляет 1 1,05 2 4,2 3 1 4 3 5 2
20	Вода, содержащая после использования на производстве 6% примесей, поступает на очистку. После очистки часть ее, содержащая 2% примесей, возвращается на производство, а остальная часть с 52% примесей сливается в отстойник. Какой процент воды, поступающей на очистку, сливается в отстойник? 1 92% 2 12,5% 3 8% 4 20% 5 9,5%
21	Если угол наклона диагонали квадрата к горизонтальной плоскости, проходящей через одну из сторон квадрата, равен 30° , то плоскость квадрата составляет с этой плоскостью угол в $\boxed{ 1 \ 60^\circ \qquad \boxed{2} \ \arcsin\frac{1}{2\sqrt{2}} \qquad \boxed{3} \ 45^\circ \qquad \boxed{4} \ 30^\circ \qquad \boxed{5} \ \arcsin\frac{1}{2\sqrt{3}} }$
22	Разность между наибольшим и наименьшим значениями функции $y=\frac{x^2+x+1}{x^2+1}$ заключена в интервале $\boxed{ \textbf{1} \ (1;2) \ \ \textbf{2} \ (0;\sqrt{3}) \ \ \textbf{3} \ (-1;0) \ \ \textbf{4} \ (-2;-1) \ \ \textbf{5} \ (-1;0,25) }$
23	Указать сумму всех целых $a \in (-2;5)$, при которых неравенство $4^x + 2(1-2a) \cdot 2^x + 4a^2 - 3 > 0$ выполняется для любых x .
24	Количество различных корней уравнения $\cos\left(\frac{\pi x}{2}-\frac{\pi}{2}\right)\cdot\sqrt{(x+140)(\sqrt{99}\sin x-49\cos x-51)(x-4,5)}=0 \text{ равно}$ 1 71 2 73 3 ∞ 4 74 5 72
25	Сплавили два металла с некоторым содержанием золота. Масса первого металла — 3 кг, с содержанием золота не менее 20% и не более 50% . Масса второго сплава 4 кг, с содержанием золота не менее 55% и не более 85% . Все возможные значения доли золота в новом сплаве образуют множество $\boxed{1}\ [0,4;0,7]\ \boxed{2}\ [0,4;0,8]\ \boxed{3}\ [0,3;0,8]\ \boxed{4}\ [0,4;0,6]\ \boxed{5}\ [0,5;0,6]$
26	Сумма целых решений неравенства $ \left(x - 5\sqrt[3]{\log_5 2} \right) (2+x) \left(2\sqrt[3]{\log_2^2 5} - x \right) (x-\pi) \leqslant 0 $ на промежутке $x \in [-4;6]$ равна

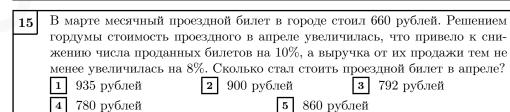
3

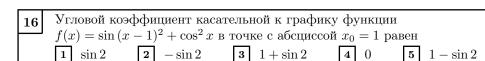
9

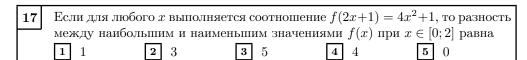
6

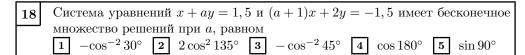

ZProi	fi2017-Math Заочный тур Профи матем 2017 Вариант 4
1	Скорость поезда на некотором участке пути была увеличена с 75 км/ч до 100 км/ч. Время, затраченное на этот участок, уменьшилось против прежнего на 1 25% 2 100/3 3 30% 4 35% 5 20%
2	Укажите наименьшее из чисел: 1 $\arctan 0, 6$ 2 $\arctan 1, (6)$ 3 $\arctan \frac{6}{\pi}$ 4 $\arctan \frac{\pi}{5}$ 5 $\arctan 0, 7$
3	Среднее арифметическое всех чисел $n \in \mathbb{Z}$, при которых дробь $\cfrac{3n^2+8n+1}{n+3}$ является также целым числом, равно $\boxed{1 \ 4} \ \boxed{2} \ -1,5 \ \boxed{3} \ -3 \ \boxed{4} \ -2 \ \boxed{5} \ 2$
4	Все решения уравнения $\sin 4x - \operatorname{tg} x \cdot \operatorname{ctg} x = -1$ определяются формулой $(k \in Z)$ 1 $\frac{\pi}{2}k$ 2 $\frac{\pi}{4}k$ 3 $\frac{\pi}{4} + 2\pi k$ 4 $\pm \frac{\pi}{4} + 2\pi k$ 5 $\frac{\pi}{4} + \frac{\pi}{2}k$
5	Сумма координат точки пересечения прямых $y=-\frac{3,1}{3,9}x+\frac{12,1}{3,9}$ и $y=-\frac{3,9}{3,1}x+\frac{15,9}{3,1}$ равна $y=-\frac{3,9}{3,1}x+\frac{15,9}{3,1}$ равна $y=-\frac{3,9}{3,1}x+\frac{15,9}{3,1}$ равна $y=-\frac{3,9}{3,1}x+\frac{15,9}{3,1}$ равна $y=-\frac{3,9}{3,1}x+\frac{15,9}{3,1}$ равна $y=-\frac{3,9}{3,1}x+\frac{15,9}{3,1}$ равна $y=-\frac{3,9}{3,1}x+\frac{12,1}{3,9}$ и $y=-\frac{3,9}{3,1}x+\frac{12,1}{3,9}$ и $y=-\frac{3,9}{3,1}x+\frac{15,9}{3,1}$ равна $y=-\frac{3,9}{3,1}x+\frac{15,9}{3,$
6	Сумма нулей функции $y=(x^3-3x^2+2x)-\sqrt{\lg\left(\cos\left(\pi x\right)\right)}$ равна 1 4 2 2 3 6 4 3 5 1
7	Значение выражения $\frac{1}{\sqrt{2a}+\sqrt{2a-1}}+\frac{1}{\sqrt{2a}+\sqrt{2a+1}}$ при $a>\frac{1}{2}$ равно $\frac{1}{\sqrt{2a-1}-\sqrt{2a+1}}$ $\frac{2}{\sqrt{2a-1}+\sqrt{2a+1}}$ $\frac{3}{\sqrt{2a-1}}$ $2\sqrt{2a}$ $\frac{4}{\sqrt{2a-1}+\sqrt{2a+1}}$ $\frac{5}{\sqrt{2a}}$
8	
	Значение выражения $\sqrt{3\sqrt{3\sqrt{3}}}$ равно 1 9 2 $3\sqrt{3}$ 3 $\sqrt{6}$ 4 $2\sqrt{3}$ 5 3
9	Если $\operatorname{tg} = \frac{\alpha}{-}$, то угол α оканчивается в

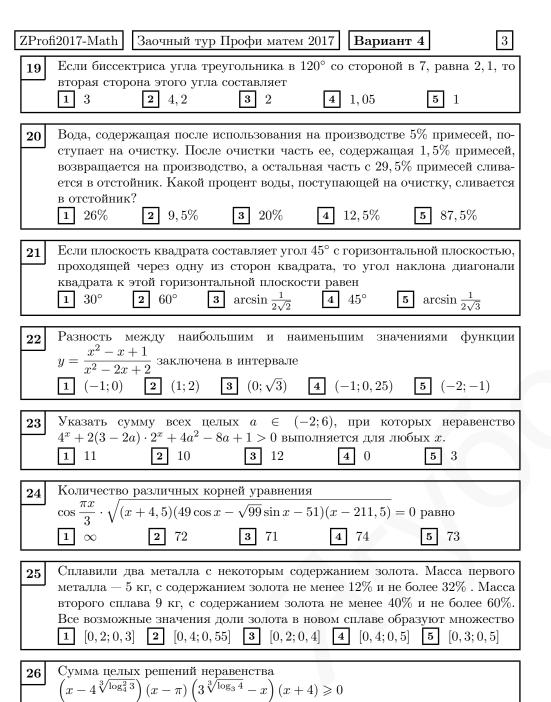

II четверти 2 однозначно четверть указать нельзя 3 III четверти

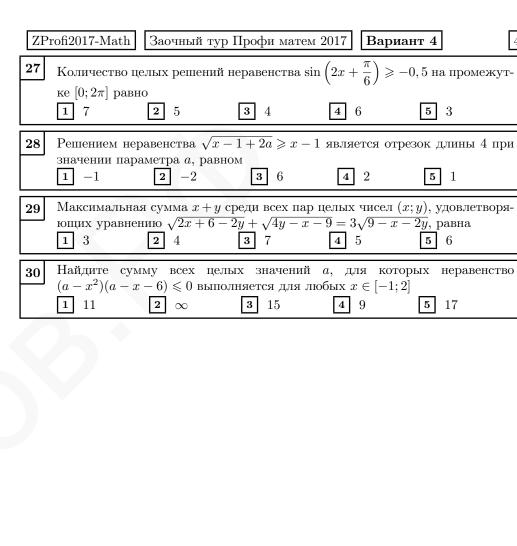

I четверти


5 IV четверти


ZP	rofi2017-Math Заочный тур Профи матем 2017 Вариант 4
10	Положительным среди приведенных чисел является 1 $\log_{0,2}\log_{25}125$ 2 $\log_{0,5}\log_{0,5}0,5$ 3 $\log_{\pi}\log_{4}\sqrt{32}$ 4 $\log_{3}\log_{3}2$ 5 $\log_{0,1}\log_{0,4}0,04$
11	В равнобедренной трапеции с высотой $2-\sqrt{2}$ и углом $\pi/4$ между ее диагоналями, противолежащим боковой стороне, средняя линия равна $1 \sqrt{2} + 2$ $2 4$ $3 2$ 4 $2\sqrt{2}$ $5 \sqrt{2}$
12	Выражение $\frac{\sin(2-17,5\pi)\cdot tg(9,5\pi-1)}{\sin(\sqrt{4-4\pi+\pi^2})\cdot\cos(\sqrt{4\pi^2+8\pi+4})}$ равно 1 $-2\sin^{-2}1$ 2 $\sin^{-1}1\cdot\cos^{-1}1$ 3 $-0,5\sin^{-2}1$






на промежутке $x \in [-6; 5]$ равна

 $\boxed{2}$ -3

3 2

|4| -7

1 4

5 1

Profi2017-Math Заочный тур Профи матем 2017 Вариант 5	ZProfi2017-Math Заочный тур Профи матем 2017 Вариант 5
1 Скорость поезда на некотором участке пути была увеличена с 100 км/ч до 125 км/ч. Время, затраченное на этот участок, уменьшилось против прежнего на 1 100 % 1 100 % 2 35% 3 30% 4 25% 5 20%	Отрицательным среди приведенных чисел является $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2 Укажите наименьшее из чисел:	В равнобедренной трапеции с высотой $2-\sqrt{2}$ и углом $\pi/4$ между ее диагоналями, противолежащим боковой стороне, средняя линия равна $\boxed{1} \sqrt{2}$ $\boxed{2}$ 4 $\boxed{3} \sqrt{2}+2$ $\boxed{4}$ $2\sqrt{2}$ $\boxed{5}$ 2
Среднее арифметическое всех чисел $n \in Z$, при которых дробь $\cfrac{3n^2+6n+1}{n+3}$ является также целым числом, равно 1 2 2 -1,5 3 4 4 -3 5 -2	Выражение $\frac{\cos{(29,5\pi+2)}\cdot\cot{(19,5\pi-1)}}{\sin{(\sqrt{1-4\pi+4\pi^2})}\cdot\cos{(\sqrt{16\pi^2+8\pi+1})}}$ равно $\boxed{1 -2 \operatorname{tg} 1} \ \boxed{2} \ 2 \cos^{-2} 1 \ \boxed{3} \ -\sin^{-1} 2 \ \boxed{4} \ \sin^{-1} 1 \cdot \cos^{-1} 1 \ \boxed{5} \ \sin^{-1} 2$
Все решения уравнения $\sin 3x + 1 = \operatorname{tg} x \cdot \operatorname{ctg} x$ определяются формулой $(n \in Z)$ 1 $\pm \frac{\pi}{3} + \pi n$ 2 $(-1)^n \cdot \frac{\pi}{3} + \pi n$ 3 $\frac{\pi}{2}n$ 4 $\frac{\pi}{3}n$ 5 $\frac{\pi}{6} + \frac{\pi}{3}n$	13 Если $\alpha = 397^{\circ}30', \beta = 367^{\circ}30',$ то $\sin \alpha \cdot \sin \beta$ равно 1 $\frac{\sqrt{2}-1}{4}$ 2 $\frac{\sqrt{3}+\sqrt{2}}{4}$ 3 $\frac{\sqrt{2}+1}{4}$ 4 $\frac{\sqrt{2}-\sqrt{3}}{4}$ 5 $\frac{\sqrt{3}-\sqrt{2}}{4}$
5 Сумма координат точки пересечения прямых $y=-\frac{2.9}{1.1}x+\frac{6.8}{1.1}$ и $y=-\frac{1.1}{2.9}x+\frac{5.2}{2.9}$ равна 1 1 2 3 3 2 4 -2 5 -1	Найдите сумму всех целых $a \in (-3;4)$, при которых уравнение $(x-a)\lg(3x-x^2-1)=0$ имеет два различных корня $\boxed{1}$ 3 $\boxed{2}$ 0 $\boxed{3}$ 2 $\boxed{4}$ 4 $\boxed{5}$ 5
6 Сумма нулей функции $y=(x^3-3x^2-4x)-\sqrt{\cos{(\pi x)}-1}$ равна 1 4 2 3 3 1 4 6 5 2 7 Значение выражения $\sqrt{2a}+\sqrt{2a-1}+\frac{1}{\sqrt{2a}+\sqrt{2a+1}}$ при $a>\frac{1}{2}$ равно	В марте месячный проездной билет в городе стоил 660 рублей. Решением гордумы стоимость проездного в апреле увеличилась, что привело к снижению числа проданных билетов на 12%, а выручка от их продажи тем не менее увеличилась на 4%. Сколько стал стоить проездной билет в апреле? 1 860 рублей 2 900 рублей 3 935 рублей 4 792 рублей 5 780 рублей
1 $2\sqrt{2a}$ 2 $4a$ 3 $\frac{2}{\sqrt{2a+1}-\sqrt{2a-1}}$ 5 $\sqrt{2a-1}-\sqrt{2a+1}$	То и угловой коэффициент касательной к графику функции $f(x) = x - \cos{(x-1)^2} - \sin^2{x} \text{ в точке с абсциссой } x_0 = 1 \text{ равен}$ $1 \sin{2} 2 1 + \sin{2} 3 -\sin{2} 4 0 5 1 - \sin{2}$
3начение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}}$ равно 1 2 2 $\sqrt[2]{2}$ 3 $\sqrt[4]{2}$ 4 $\sqrt{2}$ 5 $\sqrt[3]{2}$	Если для любого x выполняется соотношение $f(2x+1)=4x^2+1$, то разность между наибольшим и наименьшим значениями $f(x)$ при $x\in[0;2]$ равна 1 3 2 0 3 1 4 5 5 4
$ 9 $ Если $ctg\frac{\alpha}{2} = -\frac{\pi}{3},$ то угол α оканчивается в	18 Система уравнений $2x + ay = 3$ и $(a + 2)x + 4y = -3$ имеет бесконечное

Система уравнений 2x + ay = 3 и (a + 2)x + 4y = -3 имеет бесконечное

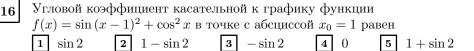
 1
 IV четверти
 2
 I четверти
 3
 однозначно четверть указать нельзя

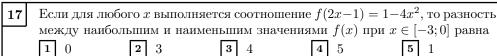
 4
 II четверти
 5
 III четверти

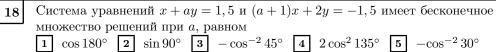

 множество решений при a, равном $1 \sin 90^{\circ}$ $2 \cos 180^{\circ}$ $3 -\cos^{-2}30^{\circ}$ $4 -8\cos^{2}135^{\circ}$ $5 -\cos^{-2}45^{\circ}$

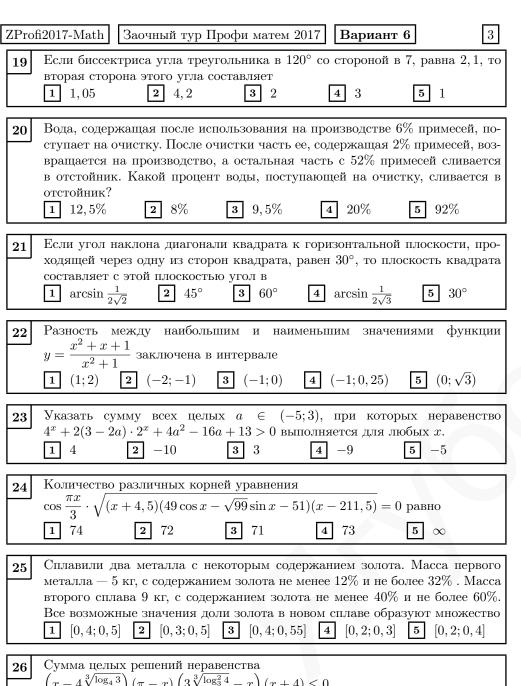
	<u> </u>
ZProf	G2017-Math Заочный тур Профи матем 2017 Вариант 5 3
19	Если биссектриса угла треугольника в 60° со стороной в 7, равна $2, 1\sqrt{3}$, то вторая сторона этого угла составляет 1 1,05 2 2 3 1 4 3 5 4,2
20	Вода, содержащая после использования на производстве 5% примесей, поступает на очистку. После очистки часть ее, содержащая 1,5% примесей, возвращается на производство, а остальная часть с 29,5% примесей сливается в отстойник. Какой процент воды, поступающей на очистку, сливается в отстойник? 1 26% 2 9,5% 3 87,5% 4 20% 5 12,5%
21	Если плоскость квадрата составляет угол 45° с горизонтальной плоскостью, проходящей через одну из сторон квадрата, то угол наклона диагонали квадрата к этой горизонтальной плоскости равен 1 60° 2 45° 3 $\arcsin\frac{1}{2\sqrt{3}}$ 4 $\arcsin\frac{1}{2\sqrt{2}}$ 5 30°
22	Разность между наибольшим и наименьшим значениями функции $y=\frac{x^2-x+1}{x^2-2x+2}$ заключена в интервале $\boxed{ \textbf{1} \ (0;\sqrt{3}) } \boxed{ \textbf{2} \ (-1;0,25) } \boxed{ \textbf{3} \ (-1;0) } \boxed{ \textbf{4} \ (1;2) } \boxed{ \textbf{5} \ (-2;-1) }$
23	Указать сумму всех целых $a \in (-2;5)$, при которых неравенство $4^x + 2(1-2a) \cdot 2^x + 4a^2 - 3 > 0$ выполняется для любых x .
24	Количество различных корней уравнения $\cos\left(\frac{\pi x}{2} - \frac{\pi}{2}\right) \cdot \sqrt{(x+140)(\sqrt{99}\sin x - 49\cos x - 51)(x-4,5)} = 0 \text{ равно}$ 1 72 2 ∞ 3 74 4 71 5 73
25	Сплавили два металла с некоторым содержанием золота. Масса первого металла — 3 кг, с содержанием золота не менее 20% и не более 50% . Масса второго сплава 4 кг, с содержанием золота не менее 55% и не более 85% . Все возможные значения доли золота в новом сплаве образуют множество $\boxed{1}\ [0,3;0,8]\ \boxed{2}\ [0,4;0,8]\ \boxed{3}\ [0,5;0,6]\ \boxed{4}\ [0,4;0,6]\ \boxed{5}\ [0,4;0,7]$
26	Сумма целых решений неравенства $ \left(x - 5\sqrt[3]{\log_5 2} \right) (2+x) \left(2\sqrt[3]{\log_2^2 5} - x \right) (x-\pi) \leqslant 0 $ на промежутке $x \in [-4;6]$ равна

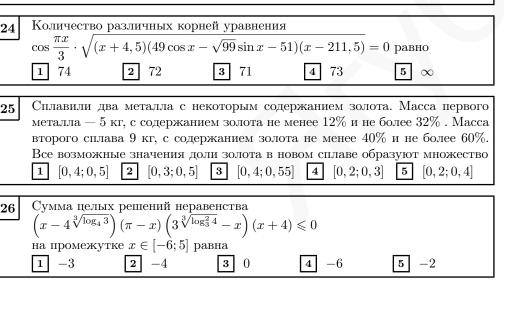
9

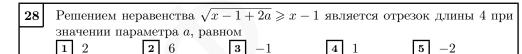

6


3



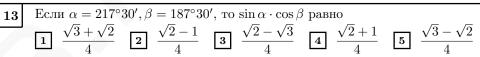

ZProf	fi2017-Math Заочный тур Профи матем 2017 Вариант 6	
1	Скорость поезда на некотором участке пути была увеличена с 70 км/ч до 100 км/ч. Время, затраченное на этот участок, уменьшилось против прежнего на	
2	Укажите наименьшее из чисел: 1 $\arctan 0,7$ 2 $\arctan 0,6$ 3 $\arctan \frac{6}{\pi}$ 4 $\arctan \frac{\pi}{5}$ 5 $\arctan 1,(6)$	
3	Среднее арифметическое всех чисел $n \in \mathbb{Z}$, при которых дробь $\frac{3n^2+8n+1}{n+3}$ является также целым числом, равно $\boxed{1}$ 2 $\boxed{2}$ 4 $\boxed{3}$ -2 $\boxed{4}$ -3 $\boxed{5}$ -1,5	
4	Все решения уравнения $\sin 4x + 1 = \operatorname{tg} 2x \cdot \operatorname{ctg} 2x$ определяются формулой $(n \in Z)$ 1 решений нет 2 πn 3 $\frac{\pi}{4}n$ 4 $\frac{\pi}{4} + \frac{\pi}{2}n$ 5 $\frac{\pi}{2}n$	
5	Сумма координат точки пересечения прямых $y=-\frac{3,3}{2,7}x-\frac{8,2}{2,7}$ и $y=-\frac{2,7}{3,3}x-\frac{9,8}{3,3}$ равна	
6	Сумма нулей функции $y=(x^3-3x^2+2x)-\sqrt{\lg{(\cos{(\pi x)})}}$ равна 1 3 6 4 1 5 2	
7	Значение выражения $\frac{1}{\sqrt{2a+1}-\sqrt{2a}}-\frac{1}{\sqrt{2a}-\sqrt{2a-1}}$ при $a>\frac{1}{2}$ равно $\frac{1}{\sqrt{2a-1}}\sqrt{2a+1}-\sqrt{2a-1}$ $\frac{2}{\sqrt{2a+1}-\sqrt{2a-1}}$ $\frac{3}{\sqrt{2a+1}-\sqrt{2a-1}}$ $\frac{4}{\sqrt{2a}}$ $\frac{2\sqrt{2a}}{\sqrt{2a}}$ $\frac{3}{\sqrt{2a+1}}\sqrt{2a-1}$	
8	Значение выражения $\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}$ равно 1 $\sqrt{6}$ 2 3 3 9 4 $2\sqrt{3}$ 5 $3\sqrt{3}$	
9	Если $\operatorname{tg} \frac{\alpha}{2} = -\frac{\pi}{4}$, то угол α оканчивается в 1 IV четверти 2 III четверти 3 однозначно четверть указать нельзя 4 I четверти 5 II четверти	


ZP	rofi2017-Math Заочный тур Профи матем 2017 Вариант 6
10	Положительным среди приведенных чисел является $\begin{array}{ c c c c c c c c }\hline 1 & \log_3\log_32 & \textbf{2} & \log_{0,1}\log_{0,4}0,04 & \textbf{3} & \log_{0,5}\log_{0,5}0,5\\\hline \textbf{4} & \log_{0,2}\log_{25}125 & \textbf{5} & \log_{\pi}\log_4\sqrt{32}\\\hline \end{array}$
11	В равнобедренной трапеции с высотой $4-2\sqrt{3}$ и углом $\pi/6$ между ее диагоналями, противолежащим боковой стороне, средняя линия равна $1 4 2 \sqrt{3}+2 3 2\sqrt{3} 4 1 5 2$
12	Выражение $\frac{\sin{(2-17,5\pi)} \cdot \tan{(9,5\pi-1)}}{\sin{(\sqrt{4-4\pi+\pi^2})} \cdot \cos{(\sqrt{4\pi^2+8\pi+4})}}$ равно $\frac{1}{4} \cdot 2\sin^{-2}{1}$ $\frac{1}{4} \cdot 2\sin^{-2}{1}$ $\frac{1}{5} \cdot 0.5\sin^{-2}{1}$
13	Если $\alpha=217^{\circ}30', \beta=187^{\circ}30',$ то $\sin\alpha\cdot\sin\beta$ равно $\boxed{1} \frac{\sqrt{3}+\sqrt{2}}{4} \boxed{2} \frac{\sqrt{3}-\sqrt{2}}{4} \boxed{3} \frac{\sqrt{2}-\sqrt{3}}{4} \boxed{4} \frac{\sqrt{2}+1}{4} \boxed{5} \frac{\sqrt{2}-1}{4}$
14	Найдите сумму всех целых $a \in (-6;6)$, при которых уравнение $(x-a)\lg(5x-x^2-5)=0$ имеет два различных корня 1 3 5 4 4 5 2
15	В марте месячный проездной билет в городе стоил 660 рублей. Решением гордумы стоимость проездного в апреле увеличилась, что привело к снижению числа проданных билетов на 25%, а выручка от их продажи тем не менее увеличилась на 6, 25%. Сколько стал стоить проездной билет в апреле? 1 792 рублей 2 900 рублей 3 935 рублей 4 780 рублей 5 860 рублей



			<i>J</i> 1 1 1			
27	Количество ц	елых решені	ий неравенства	$\cos\left(2x+\frac{\pi}{3}\right) \geqslant$	≥ -0,5 на пром	эжут-
	ке $[0; 2\pi]$ равн	10		(37		
	1 3	2 6	3 5	4 7	5 4	

ZProfi2017-Math | Заочный тур Профи матем 2017 | Вариант 6 |


Максимальная сумма
$$x+y$$
 среди всех пар целых чисел $(x;y)$, удовлетворяющих уравнению $\sqrt{2x+6-2y}+\sqrt{4y-x-9}=3\sqrt{9-x-2y}$, равна $\boxed{1}$ 6 $\boxed{2}$ 7 $\boxed{3}$ 4 $\boxed{4}$ 3 $\boxed{5}$ 5

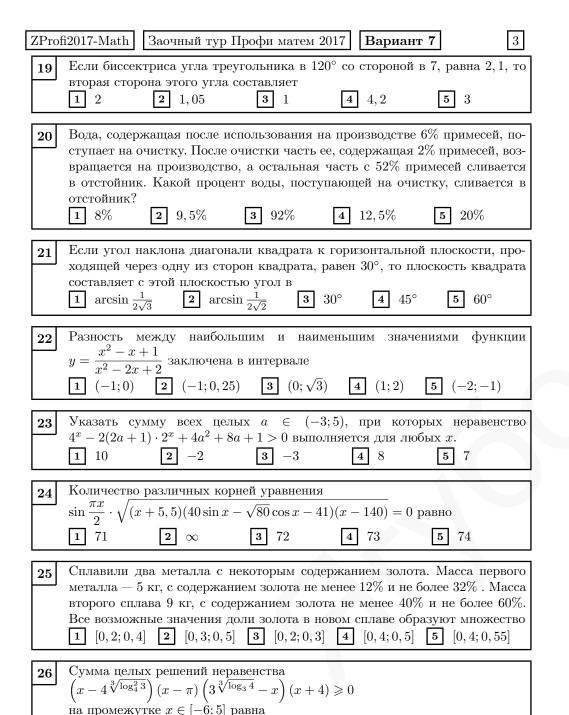
Найдите сумму всех целых значений
$$a$$
, для которых неравенство $(a-x^2)(a-x-6)\leqslant 0$ выполняется для любых $x\in [-1;2]$

ZProf	62017-Math Заочный тур Профи матем 2017 Вариант 7
1	Скорость поезда на некотором участке пути была увеличена с 90 км/ч до 135 км/ч . Время, затраченное на этот участок, уменьшилось против прежнего на $\boxed{1} 25\%$ $\boxed{2} 35\%$ $\boxed{3} 20\%$ $\boxed{4} \frac{100}{3}\%$ $\boxed{5} 30\%$
2	Укажите наименьшее из чисел: $ 1 $ arcetg $3, (3) $ $ 2 $ arctg $\frac{\pi}{10} $ $ 3 $ arcetg $3 $ $ 4 $ arctg $0, 33 $ $ 5 $ arctg $0, 32 $
3	Среднее арифметическое всех чисел $n \in Z$, при которых дробь $\frac{2n^2+n+1}{n+2}$ является также целым числом, равно $\boxed{1\ 5} \boxed{2\ -1,5} \boxed{3\ 2} \boxed{4\ 1,5} \boxed{5\ -2}$
4	Все решения уравнения $\lg x \cdot \operatorname{ctg} x + \sin 4x = 1$ определяются формулой $(n \in Z)$ 1 $\frac{\pi}{4} + \frac{\pi}{2}n$ 2 $\frac{\pi}{4}n$ 3 $\pm \frac{\pi}{4} + 2\pi n$ 4 $\frac{\pi}{2}n$ 5 πn
5	Сумма координат точки пересечения прямых $y=-\frac{1.9}{2.1}x+\frac{6.4}{2.1}$ и $y=-\frac{2.1}{1.9}x+\frac{5.6}{1.9}$ равна 1 3 2 4 1 5 -1
6	Сумма нулей функции $y=(x^3-3x^2-4x)-\sqrt{\cos{(\pi x)}-1}$ равна 1 4 2 2 3 3 4 1 5 6
7	Значение выражения $\frac{1}{\sqrt{2a}-\sqrt{2a-1}}+\frac{1}{\sqrt{2a}+\sqrt{2a+1}}$ при $a>\frac{1}{2}$ равно $\boxed{1}$ $4a$ $\boxed{2}$ $\sqrt{2a-1}-\sqrt{2a+1}$ $\boxed{3}$ $\sqrt{2a+1}-\sqrt{2a-1}$ $\boxed{4}$ $2\sqrt{2a}$ $\boxed{5}$ $\frac{-2}{\sqrt{2a-1}-\sqrt{2a+1}}$
8	Значение выражения $\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}$ равно 1 9 2 $\sqrt{6}$ 3 $3\sqrt{3}$ 4 $2\sqrt{3}$ 5 3
9	Если $\operatorname{tg} \frac{\alpha}{2} = \frac{\pi}{4}$, то угол α оканчивается в

$\frac{\pi}{4} + \frac{\pi}{2}n$ 2 $\frac{\pi}{4}n$ 3 $\pm \frac{\pi}{4} + 2\pi n$ 4 $\frac{\pi}{2}n$ 5 πn
мма координат точки пересечения прямых $y=-\frac{1,9}{2,1}x+\frac{6,4}{2,1}$ и $-\frac{2,1}{1,9}x+\frac{5,6}{1,9}$ равна
3 2 4 1 5 -1
мма нулей функции $y=(x^3-3x^2-4x)-\sqrt{\cos{(\pi x)}-1}$ равна 4 2 2 3 3 4 1 5 6
ечение выражения $\frac{1}{\sqrt{2a}-\sqrt{2a-1}}+\frac{1}{\sqrt{2a}+\sqrt{2a+1}}$ при $a>\frac{1}{2}$ равно $4a$ 2 $\sqrt{2a-1}-\sqrt{2a+1}$ 3 $\sqrt{2a+1}-\sqrt{2a-1}$ $2\sqrt{2a}$ 5 $\frac{-2}{\sqrt{2a-1}-\sqrt{2a+1}}$
рчение выражения $\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}$ равно 9 2 $\sqrt{6}$ 3 $3\sqrt{3}$ 4 $2\sqrt{3}$ 5 3
и $\operatorname{tg} \frac{\alpha}{2} = \frac{\pi}{4}$, то угол α оканчивается в однозначно четверть указать нельзя 2 II четверти 3 IV четверти III четверти 5 I четверти

ZP	rofi2017-Math Заочный тур Профи матем 2017 Вариант 7
10	Отрицательным среди приведенных чисел является $\begin{array}{ c c c c c c c c c }\hline 1 & \log_{0,2}\log_{25}5 & \textbf{2} & \lg\log_{0,05}0,005 & \textbf{3} & \log_{3}\log_{2}3 \\\hline \textbf{4} & \log_{\pi}\log_{4}\sqrt{17} & \textbf{5} & \log_{0,5}\log_{0,5}0,2 \\ \end{array}$
11	В равнобедренной трапеции с высотой $2-\sqrt{2}$ и углом $\pi/4$ между ее диагоналями, противолежащим боковой стороне, средняя линия равна $\boxed{1}$ $2\sqrt{2}$ $\boxed{2}$ 4 $\boxed{3}$ $\sqrt{2}$ $\boxed{4}$ 2 $\boxed{5}$ $\sqrt{2}+2$
12	Выражение $\frac{\sin{(2-17,5\pi)}\cdot \mathrm{tg}{(9,5\pi-1)}}{\sin{(\sqrt{4-4\pi+\pi^2})}\cdot \cos{(\sqrt{4\pi^2+8\pi+4})}}$ равно $\boxed{ \textbf{1} 0,5\sin^{-2}{1} } \qquad \boxed{ \textbf{2} 2\sin^{-2}{1} } \qquad \boxed{ \textbf{3} \sin^{-1}{1}\cdot \cos^{-1}{1} }$ $\boxed{ \textbf{4} -0,5\sin^{-2}{1} } \qquad \boxed{ \textbf{5} -2\sin^{-2}{1} }$

Найдите сумму всех целых $a \in (-4; 6)$, при которых уравнение $(x-a)\lg(5x-x^2-3)=0$ имеет два различных корня 1 5 **5** 3

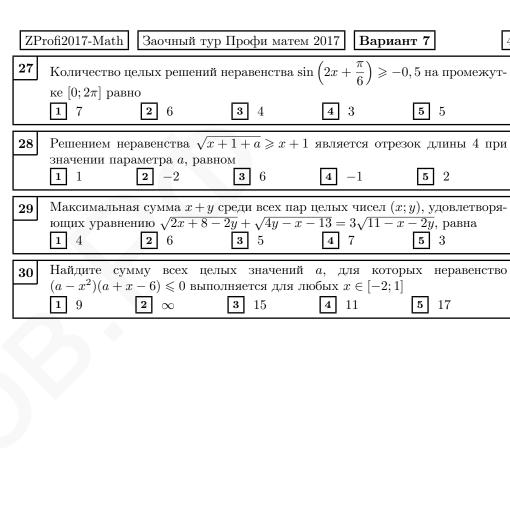

В марте месячный проездной билет в городе стоил 660 рублей. Решением гордумы стоимость проездного в апреле увеличилась, что привело к снижению числа проданных билетов на 10%, а выручка от их продажи тем не менее увеличилась на 8%. Сколько стал стоить проездной билет в апреле? **2** 780 рублей 1 900 рублей **3** 792 рублей

4 935 рублей **5** 860 рублей

Угловой коэффициент касательной к графику функции $f(x) = \sin{(x-1)^2} + \cos^2{x}$ в точке с абсциссой $x_0 = 1$ равен $|\mathbf{a}| \sin 2$ **1** 0 $3 1 + \sin 2$ $-\sin 2$ $5 1 - \sin 2$

Если для любого x выполняется соотношение $f(2x+1) = 4x^2+1$, то разность между наибольшим и наименьшим значениями f(x) при $x \in [0; 2]$ равна **1** 0 **2** 1 **5** 5

Система уравнений 2x + ay = 3 и (a + 2)x + 4y = -3 имеет бесконечное множество решений при а, равном $\boxed{1}$ $-\cos^{-2}30^{\circ}$ $\boxed{2}$ $\sin 90^{\circ}$ $\boxed{3}$ $-\cos^{-2}45^{\circ}$ $\boxed{4}$ $-8\cos^2 135^{\circ}$ $\boxed{5}$ $\cos 180^{\circ}$



[3] -3

2

 $\boxed{2}$ -4

1 4

5

2

3

ZProf	fi2017-Math Заочный тур Профи матем 2017 Вариант 8
1	Скорость поезда на некотором участке пути была увеличена с 75 км/ч до 100 км/ч. Время, затраченное на этот участок, уменьшилось против прежнего на 1 20% 2 100/3 % 3 35% 4 25% 5 30%
2	Укажите наименьшее из чисел: 1 $\arctan 0,35$ 2 $\arctan 0,35$ 3 $\arctan 0,35$ 4 $\arctan 0,4$ 5 $\arctan 0,4$ 5 $\arctan 0,4$ 5 $\arctan 0,4$ 5 $\arctan 0,4$ 6 $\arctan 0,4$ 6 $\arctan 0,4$ 6 $\arctan 0,4$ 7 $\rightarrow 0$ 7 $\rightarrow 0$ 7 $\rightarrow 0$ 8 $\rightarrow 0$ 9 $\rightarrow 0$ 8 $\rightarrow 0$ 9
3	Среднее арифметическое всех чисел $n \in Z$, при которых дробь $\frac{2n^2+7n+1}{n+2}$ является также целым числом, равно $\boxed{1\ 5} \ \boxed{2} \ -2 \ \boxed{3} \ 1,5 \ \boxed{4} \ -1,5 \ \boxed{5} \ 2$
4	Все решения уравнения $\sin 4x - \operatorname{tg} x \cdot \operatorname{ctg} x = -1$ определяются формулой $(k \in Z)$ 1 $\frac{\pi}{2}k$ 2 $\frac{\pi}{4} + \frac{\pi}{2}k$ 3 $\pm \frac{\pi}{4} + 2\pi k$ 4 $\frac{\pi}{4}k$ 5 $\frac{\pi}{4} + 2\pi k$
5	Графики функций $y=\frac{1}{2,13}(27,87-7,87x)$ и $y=\frac{1}{7,87}(22,13-2,13x)$ пересекаются в точке
6	Сумма нулей функции $y=(x^3-3x^2+2x)-\sqrt{\lg{(\cos{(\pi x)})}}$ равна 1 2 2 3 3 4 4 1 5 6
7	Значение выражения $\frac{1}{\sqrt{2a}-\sqrt{2a-1}}+\sqrt{2a+1}-\sqrt{2a}$ при $a>\frac{1}{2}$ равно $2\sqrt{2a}$ 2 $\sqrt{2a+1}-\sqrt{2a-1}$ 3 $\sqrt{2a-1}-\sqrt{2a+1}$ 4 $\frac{-2}{\sqrt{2a-1}-\sqrt{2a+1}}$ 5 $4a$
8	Значение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}}$ равно $\sqrt[3]{2}$ $\sqrt[3]{2}$ $\sqrt[4]{2}$ $\sqrt[4]{2}$ $\sqrt[5]{2}$
9	Если $\operatorname{ctg} \frac{\alpha}{2} = \frac{\pi}{3}$, то угол α оканчивается в 1 І четверти 2 однозначно четверть указать нельзя 3 ІІ четверти 4 ІV четверти 5 ІІІ четверти
10	Положительным среди приведенных чисел является $\begin{array}{ c c c c c c c c }\hline 1 & \log_{0,2}\log_{25}125 & \textbf{2} & \log_{3}\log_{3}2 & \textbf{3} & \log_{0,1}\log_{0,4}0,04\\\hline \textbf{4} & \log_{0,5}\log_{0,5}0,5 & \textbf{5} & \log_{\pi}\log_{4}\sqrt{32}\\\hline \end{array}$

ZP	rofi2017-Math Заочный тур Профи матем 2017 Вариант 8
11	В равнобедренной трапеции с высотой $4-2\sqrt{3}$ и углом $\pi/6$ между ее диагоналями, противолежащим боковой стороне, средняя линия равна $\boxed{1}$ $2\sqrt{3}$ $\boxed{2}$ $\boxed{1}$ $\boxed{3}$ $\boxed{2}$ $\boxed{4}$ $\sqrt{3}+2$ $\boxed{5}$ $\boxed{4}$
12	Выражение $\frac{\cos{(29,5\pi+2)}\cdot\cot{(19,5\pi-1)}}{\sin{(\sqrt{1-4\pi+4\pi^2})}\cdot\cos{(\sqrt{16\pi^2+8\pi+1})}}$ равно $\boxed{1 \ \sin^{-1}2 \ \boxed{2} \ \sin^{-1}1\cdot\cos^{-1}1 \ \boxed{3} \ -2\operatorname{tg}1 \ \boxed{4} \ -\sin^{-1}2 \ \boxed{5} \ 2\cos^{-2}1$
13	Если $\alpha = 262^{\circ}30', \beta = 52^{\circ}30',$ то $\cos\alpha \cdot \cos\beta$ равно 1 $\frac{\sqrt{2} - \sqrt{3}}{4}$ 2 $\frac{\sqrt{2} + 1}{4}$ 3 $\frac{\sqrt{2} - 1}{4}$ 4 $\frac{\sqrt{2} + \sqrt{3}}{4}$ 5 $\frac{\sqrt{3} - \sqrt{2}}{4}$
14	Найдите сумму всех целых $a \in (-6;7)$, при которых уравнение $(x-a)\lg(4x-x^2-2)=0$ имеет два различных корня 1 3 0 4 5 5 2
15	В марте месячный проездной билет в городе стоил 660 рублей. Решением гордумы стоимость проездного в апреле увеличилась, что привело к снижению числа проданных билетов на 23%, а выручка от их продажи тем не менее увеличилась на 5%. Сколько стал стоить проездной билет в апреле? 1 900 рублей 2 860 рублей 3 792 рублей 4 935 рублей 5 780 рублей

Угловой коэффициент касательной к графику функции $f(x) = x - \cos{(x-1)^2} - \sin^2{x}$ в точке с абсциссой $x_0 = 1$ равен

 $3 \sin 2$

Если для любого x выполняется соотношение $f(2x-1) = 1-4x^2$, то разность между наибольшим и наименьшим значениями f(x) при $x \in [-3; 0]$ равна

Система уравнений x + ay = 1,5 и (a + 1)x + 2y = -1,5 имеет бесконечное

1 $2\cos^2 135^\circ$ 2 $-\cos^{-2} 30^\circ$ 3 $-\cos^{-2} 45^\circ$ 4 $\cos 180^\circ$ 5 $\sin 90^\circ$

Если биссектриса угла треугольника в 60° со стороной в 7, равна $2, 1\sqrt{3}$, то

3 4, 2

4 $1 + \sin 2$

4 2

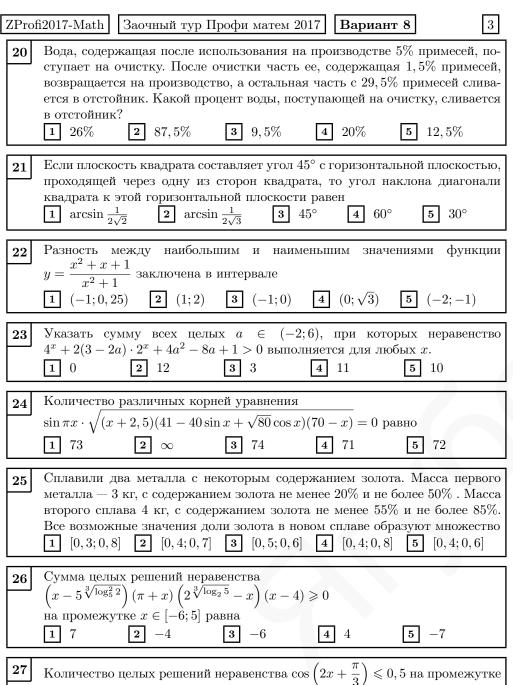
 $5 1 - \sin 2$

5 0

5 1,05

1 0

1 1


1 3

 $-\sin 2$

2 3

множество решений при a, равном

вторая сторона этого угла составляет

 $[0; 2\pi]$ равно

2 7

3 5

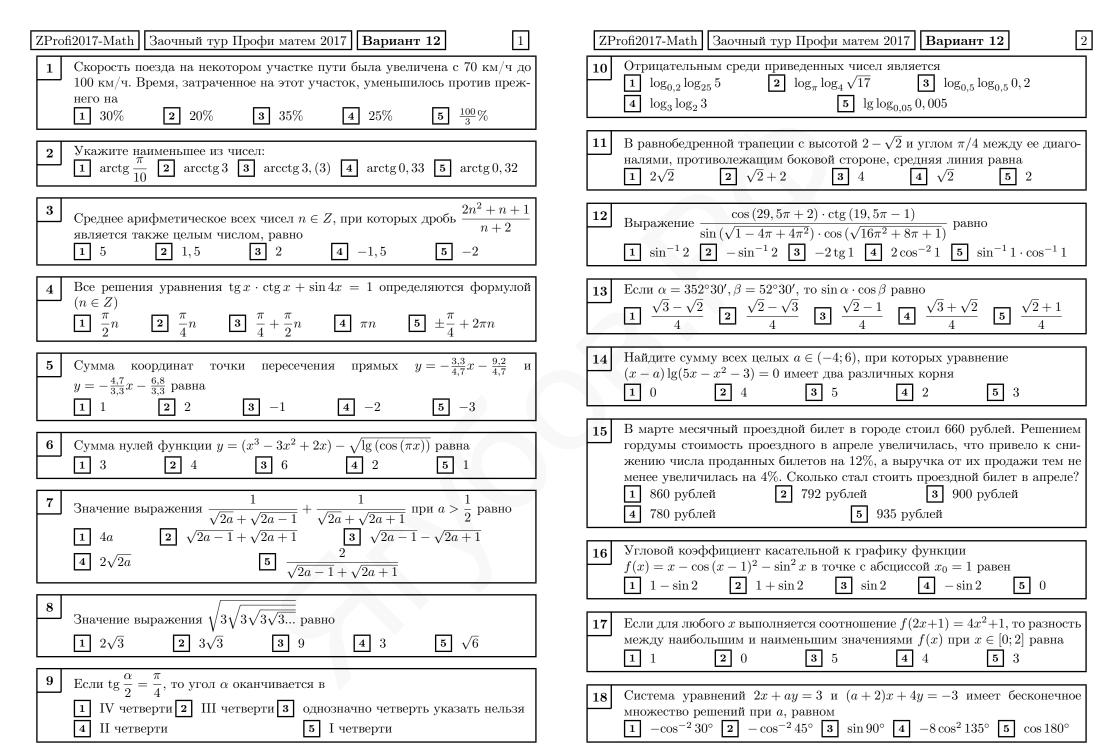
4 3

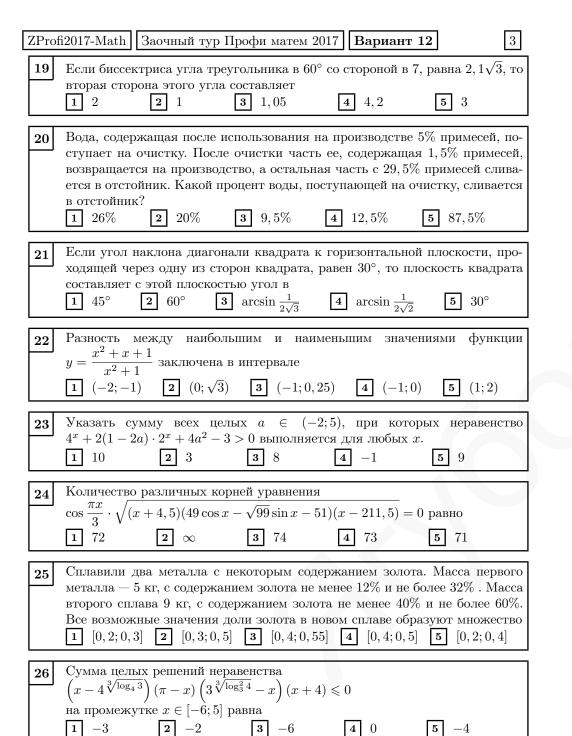
5 4

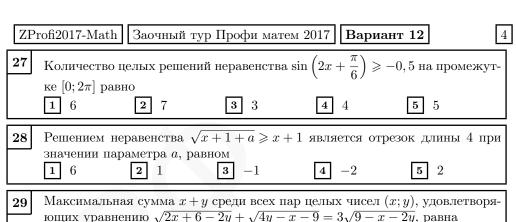
1 6

ZProfi2017-Math

1 2


2 6


Заочный тур Профи матем 2017 Вариант 8 Решением неравенства $\sqrt{x-1+2a} \geqslant x-1$ является отрезок длины 4 при значении параметра a, равном


5 1

Максимальная сумма x + y среди всех пар целых чисел (x; y), удовлетворяющих уравнению $\sqrt{2x+2-2y} + \sqrt{4y-x-4} = 3\sqrt{8-x-2y}$, равна 1 5 **3** 6

Найдите сумму всех целых значений а, для которых неравенство $(a-x^2)(a+x-12) \le 0$ выполняется для любых $x \in [-2;1]$ **3** 9 1∞ **2** 15 **4** 60 **5** 14

Найдите сумму всех целых значений a, для которых неравенство

4 11

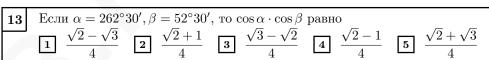
 $(a-x^2)(a-x-12) \le 0$ выполняется для любых $x \in [-1;2]$

3 9

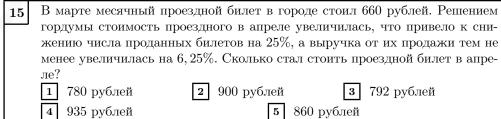
5 5

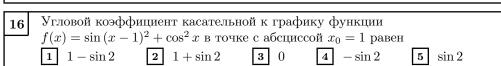
 $| \mathbf{5} | \infty$

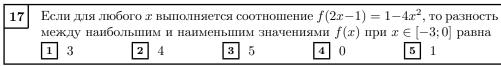
1 6

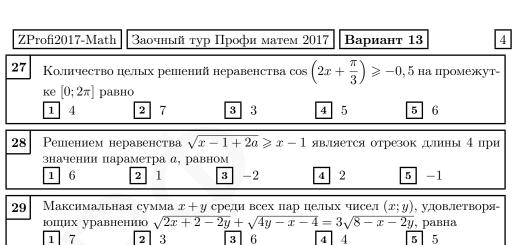

1 14

2 7

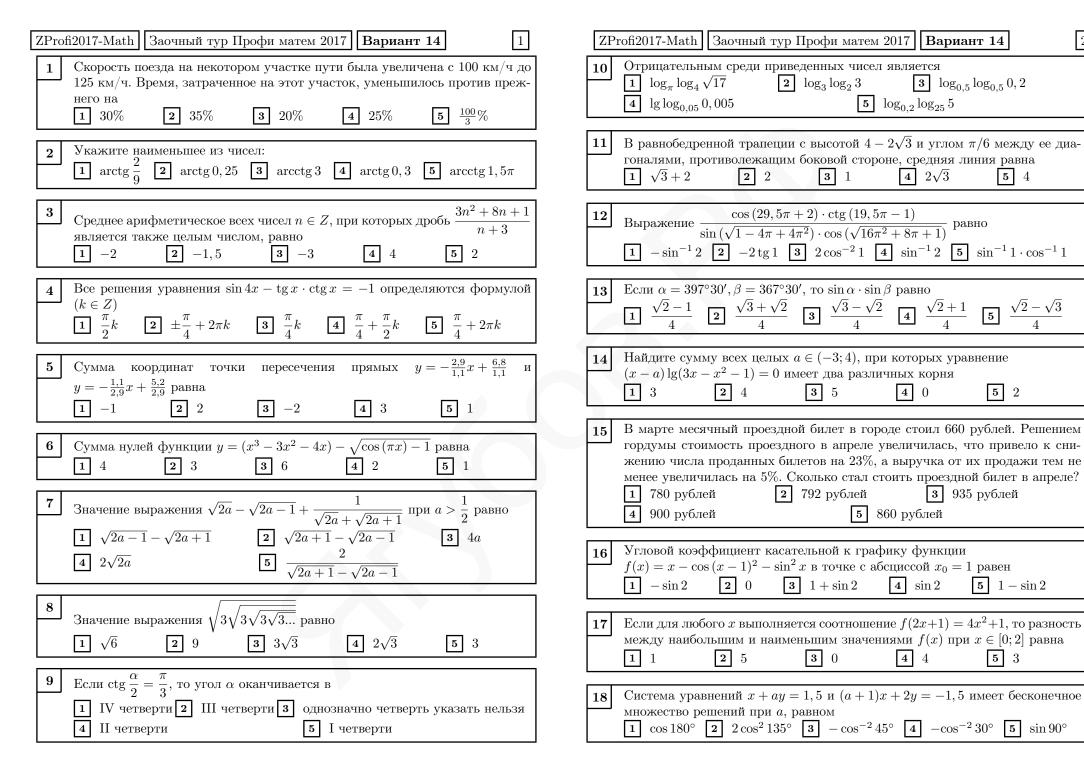

2 | 60

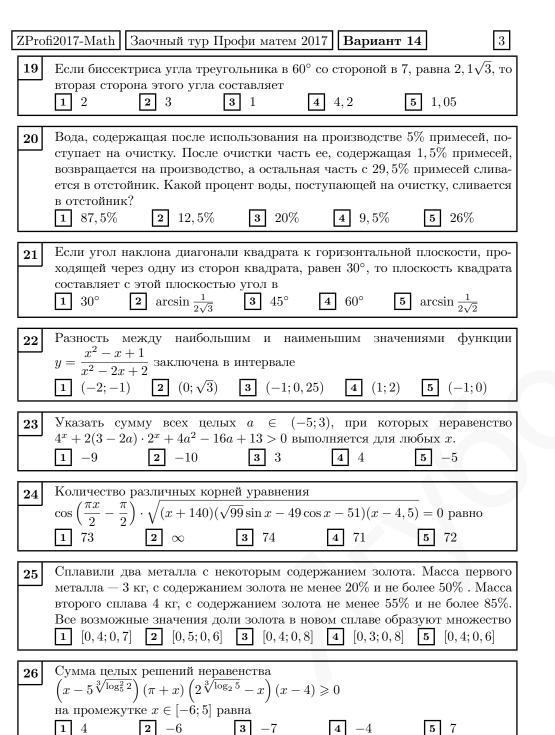

ZPro	fi2017-Math Заочный тур Профи матем 2017 Вариант 13	
1	Скорость поезда на некотором участке пути была увеличена с 90 км/ч до 135 км/ч. Время, затраченное на этот участок, уменьшилось против прежнего на $\boxed{1} \ \frac{100}{3}\%$ $\boxed{2} \ 20\%$ $\boxed{3} \ 25\%$ $\boxed{4} \ 35\%$ $\boxed{5} \ 30\%$	
2	Укажите наименьшее из чисел: $\boxed{1} \ \text{arctg} \ \frac{\pi}{5} \ \boxed{2} \ \text{arctg} \ \frac{6}{\pi} \ \boxed{3} \ \text{arcctg} \ 0, 6 \ \boxed{4} \ \text{arctg} \ 0, 7 \ \boxed{5} \ \text{arcctg} \ 1, (6)$	
3	Среднее арифметическое всех чисел $n \in Z$, при которых дробь $\frac{3n^2+6n+1}{n+3}$ является также целым числом, равно $\boxed{1 -3 \boxed{2} 2 \boxed{3} -2 \boxed{4} -1,5 \boxed{5} 4$	
4	Все решения уравнения $\sin 3x + 1 = \operatorname{tg} x \cdot \operatorname{ctg} x$ определяются формулой $(n \in Z)$ 1 $\frac{\pi}{3}n$ 2 $(-1)^n \cdot \frac{\pi}{3} + \pi n$ 3 $\frac{\pi}{6} + \frac{\pi}{3}n$ 4 $\pm \frac{\pi}{3} + \pi n$ 5 $\frac{\pi}{2}n$	
5	Сумма координат точки пересечения прямых $y=-\frac{1,9}{2,1}x+\frac{6,4}{2,1}$ и $y=-\frac{2,1}{1,9}x+\frac{5,6}{1,9}$ равна 1 2 2 -2 3 1 4 -1 5 3	
6	Сумма нулей функции $y=(x^3-3x^2-4x)-\sqrt{\cos{(\pi x)}-1}$ равна 1 4 2 6 3 1 4 3 5 2	
7	Значение выражения $\frac{1}{\sqrt{2a}-\sqrt{2a-1}}+\sqrt{2a+1}-\sqrt{2a}$ при $a>\frac{1}{2}$ равно $\boxed{1}$ $\sqrt{2a-1}-\sqrt{2a+1}$ $\boxed{2}$ $2\sqrt{2a}$ $\boxed{3}$ $\frac{-2}{\sqrt{2a-1}-\sqrt{2a+1}}$ $\boxed{4}$ $\sqrt{2a+1}-\sqrt{2a-1}$ $\boxed{5}$ $4a$	
8	Значение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}}$ равно $\sqrt[1]{\sqrt{2}}$ $\sqrt[2]{2}$ $\sqrt[3]{4\sqrt{2}}$ $\sqrt[4]{2}$ $\sqrt[4]{2}$ $\sqrt[5]{3\sqrt{2}}$	
9	Если $ctg\frac{\alpha}{2}=-\frac{\pi}{3},$ то угол α оканчивается в 1 однозначно четверть указать нельзя 2 І четверти 3 ІV четверти 4 ІІ четверти 5 ІІІ четверти	

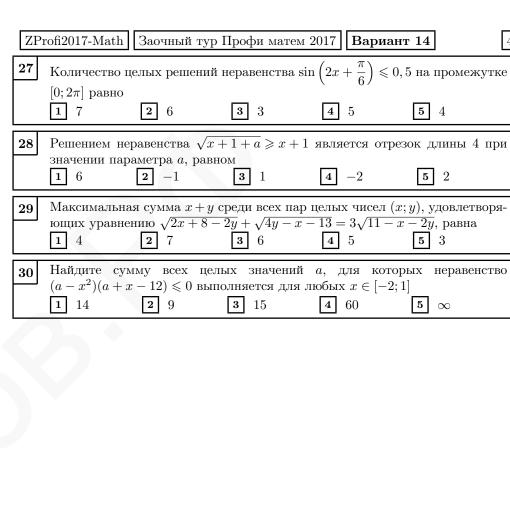

ZPı	rofi2017-Math Заочный тур Профи матем 2017 Вариант 13
10	Положительным среди приведенных чисел является $\begin{array}{ c c c c c c c c c }\hline 1 & \log_{\pi}\log_4\sqrt{32} & \textbf{2} & \log_{0,1}\log_{0,4}0,04 & \textbf{3} & \log_{0,2}\log_{25}125 \\\hline \textbf{4} & \log_3\log_32 & \textbf{5} & \log_{0,5}\log_{0,5}0,5 \\\hline \end{array}$
11	В равнобедренной трапеции с высотой $4-2\sqrt{3}$ и углом $\pi/6$ между ее диа-
	гоналями, противолежащим боковой стороне, средняя линия равна $1 \ 1 \ 2 \ 2 \ 3 \ \sqrt{3} + 2 \ 4 \ 2\sqrt{3} \ 5 \ 4$
12	$\sin(2-17,5\pi) \cdot \text{tg}(9,5\pi-1)$
	Выражение $\frac{\sin(\sqrt{4-4\pi+\pi^2})\cdot\cos(\sqrt{4\pi^2+8\pi+4})}{\sin(\sqrt{4-4\pi+\pi^2})\cdot\cos(\sqrt{4\pi^2+8\pi+4})}$ равно
	$2\sin^{-2}1$ $2\sin^{-2}1$ 3 $-2\sin^{-2}1$
	$\boxed{4} -0.5\sin^{-2}1$ $\boxed{5} \sin^{-1}1 \cdot \cos^{-1}1$



18	Система уравнений $x + ay = 1,5$ и $(a + 1)x + 2y = -1,5$ имеет бесконечно
	множество решений при a , равном
	1 $\cos 180^{\circ}$ 2 $-\cos^{-2} 45^{\circ}$ 3 $2\cos^2 135^{\circ}$ 4 $-\cos^{-2} 30^{\circ}$ 5 $\sin 90^{\circ}$


Найдите сумму всех целых значений a, для которых неравенство


4 15


5 11

 $(a-x^2)(a-x-6) \le 0$ выполняется для любых $x \in [-1; 2]$

 $|\mathbf{3}| \propto$

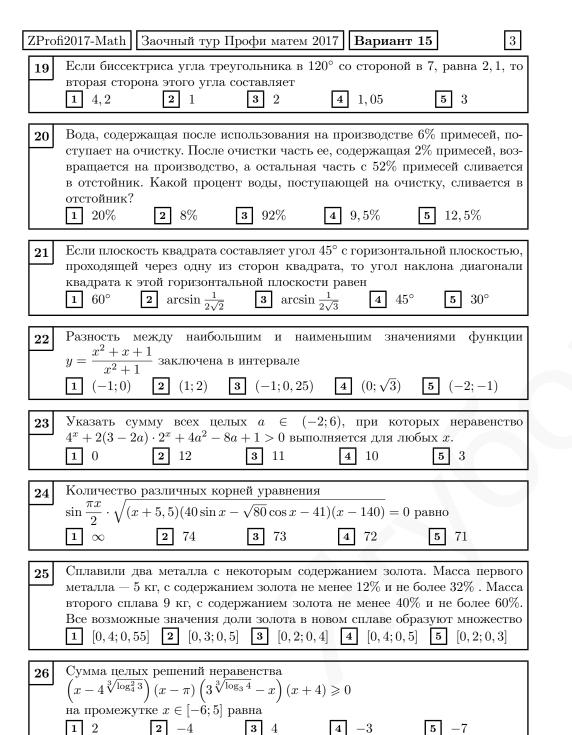
ZPro	fi2017-Math Заочный тур Профи матем 2017 Вариант 15
1	Скорость поезда на некотором участке пути была увеличена с 75 км/ч до 100 км/ч. Время, затраченное на этот участок, уменьшилось против прежнего на 1 20% 2 30% 3 35% 4 100/3 % 5 25%
2	Укажите наименьшее из чисел:
3	Среднее арифметическое всех чисел $n \in \mathbb{Z}$, при которых дробь $\frac{2n^2+7n+1}{n+2}$ является также целым числом, равно $\boxed{1 -2 \boxed{2} 1,5 \boxed{3} -1,5 \boxed{4} 5 \boxed{5} 2$
4	Все решения уравнения $\sin 4x + 1 = \operatorname{tg} 2x \cdot \operatorname{ctg} 2x$ определяются формулой $(n \in Z)$ 1 решений нет 2 $\frac{\pi}{4}n$ 3 $\frac{\pi}{4} + \frac{\pi}{2}n$ 4 $\frac{\pi}{2}n$ 5 πn
5	Сумма координат точки пересечения прямых $y=-\frac{3,7}{1,3}x+\frac{2,8}{1,3}$ и $y=-\frac{1,3}{3,7}x+\frac{7,2}{3,7}$ равна 1 0 2 -2 3 2 4 1 5 -1
6	Сумма нулей функции $y = (x^3 - 3x^2 + 2x) - \sqrt{\lg(\cos(\pi x))}$ равна 1 4 2 6 3 1 4 3 5 2
7	Значение выражения $\sqrt{2a+1}-\sqrt{2a}+\frac{1}{\sqrt{2a}-\sqrt{2a-1}}$ при $a>\frac{1}{2}$ равно 1 $4a$ 2 $2\sqrt{2a}$ 3 $\sqrt{2a-1}-\sqrt{2a+1}$ 4 $\sqrt{2a+1}-\sqrt{2a-1}$ 5 $\frac{2}{\sqrt{2a+1}-\sqrt{2a-1}}$
8	Значение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}}$ равно 1 $\sqrt{2}$ 2 $\sqrt[4]{2}$ 3 $\sqrt[3]{2}$ 4 $2\sqrt{2}$ 5 2
	α α
9	Если $\operatorname{tg} \frac{\alpha}{2} = -\frac{\pi}{4}$, то угол α оканчивается в
	1 I четверти 2 III четверти 3 IV четверти 4 II четверти 5 однозначно четверть указать нельзя

ZP	rofi2017-Math Заочный тур Профи матем 2017 Вариант 15
10	Положительным среди приведенных чисел является 1 $\log_{0,1}\log_{0,4}0,04$ 2 $\log_{\pi}\log_{4}\sqrt{32}$ 3 $\log_{0,5}\log_{0,5}0,5$ 4 $\log_{0,2}\log_{25}125$ 5 $\log_{3}\log_{3}2$
11	В равнобедренной трапеции с высотой $2-\sqrt{2}$ и углом $\pi/4$ между ее диагоналями, противолежащим боковой стороне, средняя линия равна $1 \sqrt{2} + 2$ $2 \sqrt{2}$ $3 4$ $4 2$ $5 2\sqrt{2}$
12	Выражение $\frac{\sin{(2-17,5\pi)}\cdot \mathrm{tg}{(9,5\pi-1)}}{\sin{(\sqrt{4-4\pi+\pi^2})}\cdot \cos{(\sqrt{4\pi^2+8\pi+4})}}$ равно $\boxed{1} -0,5\sin^{-2}{1}$ $\boxed{2} 0,5\sin^{-2}{1}$ $\boxed{3} 2\sin^{-2}{1}$ $\boxed{4} \sin^{-1}{1}\cdot \cos^{-1}{1}$ $\boxed{5} -2\sin^{-2}{1}$
13	Если $\alpha=217^{\circ}30', \beta=187^{\circ}30',$ то $\sin\alpha\cdot\cos\beta$ равно 1 $\frac{\sqrt{2}-1}{4}$ 2 $\frac{\sqrt{3}+\sqrt{2}}{4}$ 3 $\frac{\sqrt{2}+1}{4}$ 4 $\frac{\sqrt{3}-\sqrt{2}}{4}$ 5 $\frac{\sqrt{2}-\sqrt{3}}{4}$
14	Найдите сумму всех целых $a \in (-6;7)$, при которых уравнение $(x-a)\lg(4x-x^2-2)=0$ имеет два различных корня 1 2 3 3 5 4 4 5 0
15	В марте месячный проездной билет в городе стоил 660 рублей. Решением гордумы стоимость проездного в апреле увеличилась, что привело к снижению числа проданных билетов на 10%, а выручка от их продажи тем не менее увеличилась на 8%. Сколько стал стоить проездной билет в апреле? 1 780 рублей 2 935 рублей 3 792 рублей 4 860 рублей 5 900 рублей
16	Угловой коэффициент касательной к графику функции $f(x) = \sin{(x-1)^2} + \cos^2{x}$ в точке с абсциссой $x_0 = 1$ равен 1 $\sin{2}$ 2 1 $-\sin{2}$ 3 $-\sin{2}$ 4 $1 + \sin{2}$ 5 0

Если для любого x выполняется соотношение $f(2x-1)=1-4x^2$, то разность между наибольшим и наименьшим значениями f(x) при $x\in[-3;0]$ равна

Система уравнений 2x + ay = 3 и (a + 2)x + 4y = -3 имеет бесконечное

 $1 \cos 180^{\circ}$ $2 \cos 245^{\circ}$ $3 \sin 90^{\circ}$ $4 \cos^2 30^{\circ}$ $5 \cos^2 135^{\circ}$


5 4

3 3

1 1

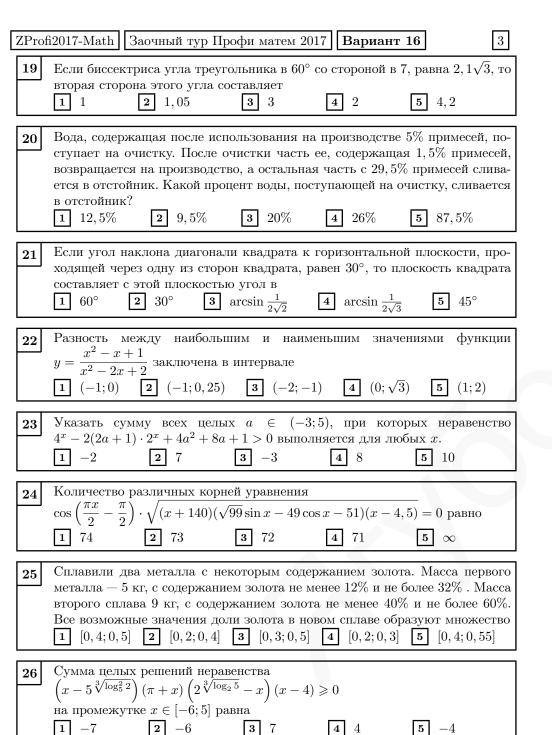
2 5

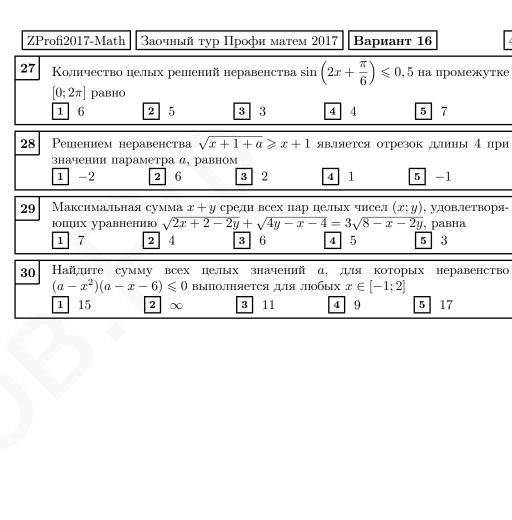
множество решений при a, равном

1 Скорость поезда на некотором участке пути была увеличена с 100 км/ч до 125 км/ч. Время, затраченное на этот участок, уменьшилось против прежнего на	ZProf	fi2017-Math Заочный тур Профи матем 2017 Вариант 16
1 $\arctan \cot 3, 5\pi$ 2 $\arctan \frac{2}{9}$ 3 $\arctan 3$ 4 $\arctan 3, 5$ $\arctan 3, 25$ 3 Среднее арифметическое всех чисел $n \in Z$, при которых дробь $3n^2 + 6n + 1$ является также целым числом, равно 1 4 2 -1,5 3 2 4 -2 5 -3 4 Все решения уравнения $\sin 3x + 1 = \tan x \cdot \cot x$ определяются формулой $(n \in Z)$ 1 $\frac{\pi}{2}n$ 2 $\pm \frac{\pi}{3} + \pi n$ 3 $\frac{\pi}{3}n$ 4 $\frac{\pi}{6} + \frac{\pi}{3}n$ 5 $(-1)^n \cdot \frac{\pi}{3} + \pi n$ 5 Графики функций $y = \frac{1}{2,13}(27, 87 - 7, 87x)$ и $y = \frac{1}{7,87}(22, 13 - 2, 13x)$ пересекаются в точке 1 $(1;4)$ 2 $(2;3)$ 3 $(3;2)$ 4 графики не пересекаются 5 $(4;1)$ 6 Сумма нулей функции $y = (x^3 - 3x^2 + 2x) - \sqrt{\lg(\cos(\pi x))}$ равна 1 4 2 2 3 6 4 1 5 3 7 Значение выражения $\sqrt{2a} + \sqrt{2a - 1} + \frac{1}{\sqrt{2a} + \sqrt{2a + 1}}$ при $a > \frac{1}{2}$ равно 1 $2\sqrt{2a}$ 2 $\sqrt{2a - 1} - \sqrt{2a + 1}$ 3 $\frac{2}{\sqrt{2a + 1} - \sqrt{2a - 1}}$ 4 4 a 5 $\sqrt{2a + 1} - \sqrt{2a - 1}$ 8 Значение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}\sqrt[3]{2}}}$ равно 1 $\sqrt[4]{2}$ 2 $\sqrt[3]{2}$ 3 $\sqrt[3]{2}$ 4 2 5 $2\sqrt[3]{2}$	1	125 км/ч. Время, затраченное на этот участок, уменьшилось против прежнего на
является также целым числом, равно 1 4 2 -1,5 3 2 4 -2 5 -3 4 Все решения уравнения $\sin 3x + 1 = \operatorname{tg} x \cdot \operatorname{ctg} x$ определяются формулой $(n \in Z)$ 1 $\frac{\pi}{2}n$ 2 $\pm \frac{\pi}{3} + \pi n$ 3 $\frac{\pi}{3}n$ 4 $\frac{\pi}{6} + \frac{\pi}{3}n$ 5 $(-1)^n \cdot \frac{\pi}{3} + \pi n$ 5 Графики функций $y = \frac{1}{2,13}(27,87 - 7,87x)$ и $y = \frac{1}{7,87}(22,13 - 2,13x)$ пересекаются в точке 1 $(1;4)$ 2 $(2;3)$ 3 $(3;2)$ 4 графики не пересекаются $(4;1)$ 6 Сумма нулей функции $y = (x^3 - 3x^2 + 2x) - \sqrt{\lg(\cos(\pi x))}$ равна 1 4 2 2 3 6 4 1 5 3 7 Значение выражения $\sqrt{2a} + \sqrt{2a - 1} + \frac{1}{\sqrt{2a} + \sqrt{2a + 1}}$ при $a > \frac{1}{2}$ равно 1 $2\sqrt{2a}$ 2 $\sqrt{2a - 1} - \sqrt{2a + 1}$ 3 $\frac{2}{\sqrt{2a + 1} - \sqrt{2a - 1}}$ 4 4a 5 $\sqrt{2a + 1} - \sqrt{2a - 1}$ 5 $\sqrt{2a + 1} - \sqrt{2a - 1}$ 8 Значение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}}}$ равно 1 $\sqrt[4]{2}$ 2 $\sqrt[3]{2}$ 3 $\sqrt[3]{2}$ 4 2 5 $2\sqrt{2}$	2	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	является также целым числом, равно
каются в точке	4	$(n \in Z)$
1 4 2 2 3 6 4 1 5 3 7 Значение выражения $\sqrt{2a} + \sqrt{2a-1} + \frac{1}{\sqrt{2a} + \sqrt{2a+1}}$ при $a > \frac{1}{2}$ равно 1 $2\sqrt{2a}$ 2 $\sqrt{2a+1} - \sqrt{2a-1}$ 4 4a 5 $\sqrt{2a+1} - \sqrt{2a-1}$ 8 Значение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2\cdots}}}}$ равно 1 $\sqrt[4]{2}$ 2 $\sqrt[3]{2}$ 3 $\sqrt[3]{2}$ 4 2 5 $2\sqrt{2}$ 9 Если tg $\frac{\alpha}{2} = \frac{\pi}{4}$, то угол α оканчивается в	5	каются в точке
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	
1 $\sqrt[4]{2}$ 2 $\sqrt[3]{2}$ 3 $\sqrt{2}$ 4 2 5 $2\sqrt{2}$ 9 Если $\lg \frac{\alpha}{2} = \frac{\pi}{4}$, то угол α оканчивается в	7	1 $2\sqrt{2a}$ 2 $\sqrt{2a-1}-\sqrt{2a+1}$ 3 $\frac{2}{\sqrt{2a+1}-\sqrt{2a-1}}$
1 $\sqrt[4]{2}$ 2 $\sqrt[3]{2}$ 3 $\sqrt{2}$ 4 2 5 $2\sqrt{2}$ 9 Если $\lg \frac{\alpha}{2} = \frac{\pi}{4}$, то угол α оканчивается в	۰	
1 $\sqrt[4]{2}$ 2 $\sqrt[3]{2}$ 3 $\sqrt{2}$ 4 2 5 $2\sqrt{2}$ 9 Если $\lg \frac{\alpha}{2} = \frac{\pi}{4}$, то угол α оканчивается в		Значение выражения $\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2}}}$ равно
	9	

5 IV четверти

4 II четверти

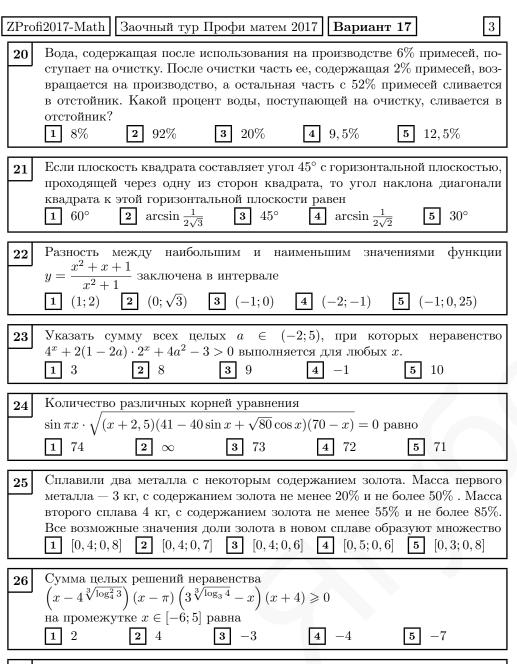

ZP	Profi2017-Math Заочный тур Профи матем 2017 Вариант 16 2
10	Положительным среди приведенных чисел является $\begin{array}{ c c c c c c c c }\hline 1 & \log_{0,1}\log_{0,4}0,04 & \textbf{2} & \log_{0,2}\log_{25}125 & \textbf{3} & \log_{3}\log_{3}2\\\hline \textbf{4} & \log_{0,5}\log_{0,5}0,5 & \textbf{5} & \log_{\pi}\log_{4}\sqrt{32}\\\hline \end{array}$
11	В равнобедренной трапеции с высотой $2-\sqrt{2}$ и углом $\pi/4$ между ее диагоналями, противолежащим боковой стороне, средняя линия равна $\boxed{1}$ $2\sqrt{2}$ $\boxed{2}$ $\boxed{2}$ $\boxed{3}$ $\sqrt{2}+2$ $\boxed{4}$ $\sqrt{2}$ $\boxed{5}$ 4
12	Выражение $\frac{\sin{(2-17,5\pi)}\cdot \mathrm{tg}{(9,5\pi-1)}}{\sin{(\sqrt{4-4\pi+\pi^2})}\cdot \cos{(\sqrt{4\pi^2+8\pi+4})}}$ равно $\boxed{1} \ 2\sin^{-2}{1} \qquad \boxed{2} \ -2\sin^{-2}{1} \qquad \boxed{3} \ \sin^{-1}{1}\cdot \cos^{-1}{1}$ $\boxed{4} \ 0,5\sin^{-2}{1} \qquad \boxed{5} \ -0,5\sin^{-2}{1}$
13	Если $\alpha=397^{\circ}30', \beta=367^{\circ}30',$ то $\sin\alpha\cdot\cos\beta$ равно $\boxed{1} \ \frac{\sqrt{2}-\sqrt{3}}{4} \ \boxed{2} \ \frac{\sqrt{2}-1}{4} \ \boxed{3} \ \frac{\sqrt{3}-\sqrt{2}}{4} \ \boxed{4} \ \frac{\sqrt{3}+\sqrt{2}}{4} \ \boxed{5} \ \frac{\sqrt{2}+1}{4}$
14	Найдите сумму всех целых $a \in (-4;6)$, при которых уравнение $(x-a)\lg(5x-x^2-3)=0$ имеет два различных корня 1 0 2 3 3 5 4 4 5 2
15	В марте месячный проездной билет в городе стоил 660 рублей. Решением гордумы стоимость проездного в апреле увеличилась, что привело к снижению числа проданных билетов на 25%, а выручка от их продажи тем не менее увеличилась на 6, 25%. Сколько стал стоить проездной билет в апреле? 1 792 рублей 2 860 рублей 3 900 рублей 4 780 рублей 5 935 рублей
16	Угловой коэффициент касательной к графику функции $f(x) = x - \cos{(x-1)^2} - \sin^2{x}$ в точке с абсциссой $x_0 = 1$ равен $\boxed{1 - \sin{2}} \qquad \boxed{2} \qquad 1 + \sin{2} \qquad \boxed{3} \sin{2} \qquad \boxed{4} \qquad 0 \qquad \boxed{5} \qquad 1 - \sin{2}$
17	Если для любого x выполняется соотношение $f(2x-1)=1-4x^2$, то разность


между наибольшим и наименьшим значениями f(x) при $x \in [-3;0]$ равна

Система уравнений x+ay=1,5 и (a+1)x+2y=-1,5 имеет бесконечное

множество решений при a, равном $\boxed{1} \cos 180^{\circ} \boxed{2} - \cos^{-2} 45^{\circ} \boxed{3} 2 \cos^{2} 135^{\circ} \boxed{4} \sin 90^{\circ} \boxed{5} - \cos^{-2} 30^{\circ}$

5 5



5 3

ZPro	fi2017-Math Заочный тур Профи матем 2017 Вариант 17	
1	Скорость поезда на некотором участке пути была увеличена с 75 км/ч до 100 км/ч . Время, затраченное на этот участок, уменьшилось против прежнего на $\boxed{1} 20\%$ $\boxed{2} 35\%$ $\boxed{3} 30\%$ $\boxed{4} \frac{100}{3}\%$ $\boxed{5} 25\%$	
2	Укажите наименьшее из чисел: 1 $\arctan 0, 7$ 2 $\arctan 0, 6$ 3 $\arctan 1, (6)$ 4 $\arctan \frac{6}{\pi}$ 5 $\arctan \frac{\pi}{5}$	
3	Среднее арифметическое всех чисел $n \in \mathbb{Z}$, при которых дробь $\frac{2n^2+n+1}{n+2}$ является также целым числом, равно $\boxed{1 -2 \boxed{2} -1,5 \boxed{3} \ 1,5 \boxed{4} \ 2 \boxed{5} \ 5$	
4	Все решения уравнения $\sin 4x + 1 = \operatorname{tg} 2x \cdot \operatorname{ctg} 2x$ определяются формулой	
	$(n \in Z)$	
5	Сумма координат точки пересечения прямых $y = -\frac{3,3}{2,7}x - \frac{8,2}{2,7}$ и	
	$y = -\frac{2.7}{3.3}x - \frac{9.8}{3.3}$ равна 1 3 2 2 3 -1 4 -3 5 -2	
6	Сумма нулей функции $y = (x^3 - 3x^2 - 4x) - \sqrt{\cos(\pi x) - 1}$ равна	
	1 1 2 4 3 3 4 2 5 6	
7	Значение выражения $\frac{1}{\sqrt{2a}-\sqrt{2a-1}}+\frac{1}{\sqrt{2a}+\sqrt{2a+1}}$ при $a>\frac{1}{2}$ равно	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8	Значение выражения $\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}$ равно	
	1 $\sqrt{6}$ 2 $2\sqrt{3}$ 3 9 4 $3\sqrt{3}$ 5 3	
9	Если $ctg\frac{\alpha}{2}=-\frac{\pi}{3}$, то угол α оканчивается в	
	1 однозначно четверть указать нельзя 2 IV четверти 3 III четверти 4 I четверти 5 II четверти	

10	Отрицательным среди приведенных чисел является $\begin{array}{ c c c c c c c c c }\hline 1 & \log_{0,5}\log_{0,5}0,2 & \textbf{2} & \log_{0,2}\log_{25}5 & \textbf{3} & \lg\log_{0,05}0,005 \\\hline \textbf{4} & \log_{\pi}\log_{4}\sqrt{17} & \textbf{5} & \log_{3}\log_{2}3 & \\\hline \end{array}$
11	В равнобедренной трапеции с высотой $4-2\sqrt{3}$ и углом $\pi/6$ между ее диагоналями, противолежащим боковой стороне, средняя линия равна 1 2 2 4 3 $2\sqrt{3}$ 4 1 5 $\sqrt{3}+2$
12	Выражение $\frac{\cos{(29,5\pi+2)}\cdot\cot{(19,5\pi-1)}}{\sin{(\sqrt{1-4\pi+4\pi^2})}\cdot\cos{(\sqrt{16\pi^2+8\pi+1})}}$ равно $\boxed{1\ \sin^{-1}2\ \boxed{2\ -2\tan{1}\ \boxed{3\ 2\cos^{-2}1\ \boxed{4\ -\sin^{-1}2\ \boxed{5\ \sin^{-1}1\cdot\cos^{-1}1}}}$
13	Если $\alpha=217^{\circ}30', \beta=187^{\circ}30',$ то $\sin\alpha\cdot\sin\beta$ равно $\boxed{1} \ \frac{\sqrt{2}+1}{4} \ \boxed{2} \ \frac{\sqrt{3}+\sqrt{2}}{4} \ \boxed{3} \ \frac{\sqrt{2}-1}{4} \ \boxed{4} \ \frac{\sqrt{2}-\sqrt{3}}{4} \ \boxed{5} \ \frac{\sqrt{3}-\sqrt{2}}{4}$
14	Найдите сумму всех целых $a \in (-6;7)$, при которых уравнение $(x-a)\lg(4x-x^2-2)=0$ имеет два различных корня 1 5 2 4 3 5 2
15	В марте месячный проездной билет в городе стоил 660 рублей. Решением гордумы стоимость проездного в апреле увеличилась, что привело к снижению числа проданных билетов на 12%, а выручка от их продажи тем не менее увеличилась на 4%. Сколько стал стоить проездной билет в апреле? 1 792 рублей 2 900 рублей 3 860 рублей 4 780 рублей 5 935 рублей
16	Угловой коэффициент касательной к графику функции $f(x) = \sin{(x-1)^2} + \cos^2{x}$ в точке с абсциссой $x_0 = 1$ равен $\boxed{1 \ 1 - \sin{2}} \qquad \boxed{2} \ -\sin{2} \qquad \boxed{3} \ \sin{2} \qquad \boxed{4} \ 1 + \sin{2} \qquad \boxed{5} \ 0$
17	Если для любого x выполняется соотношение $f(2x+1)=4x^2+1$, то разность между наибольшим и наименьшим значениями $f(x)$ при $x\in[0;2]$ равна 1 4 5 5 3 3 4 1 5 0
18	Система уравнений $2x+ay=3$ и $(a+2)x+4y=-3$ имеет бесконечное множество решений при a , равном $\boxed{1 \cos 180^{\circ} \ 2 - 8\cos^2 135^{\circ} \ 3 \sin 90^{\circ} \ 4 - \cos^{-2} 45^{\circ} \ 5 - \cos^{-2} 30^{\circ}}$
19	Если биссектриса угла треугольника в 120° со стороной в 7, равна 2, 1, то вторая сторона этого угла составляет 1 3 2 1 3 1,05 4 2 5 4,2

ZProfi2017-Math Заочный тур Профи матем 2017 Вариант 17

1 2 2 4 3 -3 4 -4 5 -7

27 Количество целых решений неравенства $\cos\left(2x+\frac{\pi}{3}\right)\leqslant 0,5$ на промежутке $[0;2\pi]$ равно 1 6 2 3 3 5 4 4 5 7

ZProfi2017-Math	Заочный тур Профи матем 2017	Вариант 17
-----------------	------------------------------	------------

1 6

1 4

1 9

2 1

2 11

28 Решением неравенства $\sqrt{x-1+2a} \geqslant x-1$ является отрезок длины 4 при значении параметра a, равном

|4| -2

4 3

4 17

5 2

 5∞

- Максимальная сумма x+y среди всех пар целых чисел (x;y), удовлетворяющих уравнению $\sqrt{2x+8}-2y+\sqrt{4y-x-13}=3\sqrt{11-x-2y}$, равна
- Найдите сумму всех целых значений a, для которых неравенство $(a-x^2)(a+x-6) \le 0$ выполняется для любых $x \in [-2;1]$

ZProt	fi2017-Math Заочный тур Профи матем 2017 Вариант 18
1	Скорость поезда на некотором участке пути была увеличена с 90 км/ч до 135 км/ч. Время, затраченное на этот участок, уменьшилось против прежнего на
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
2	Укажите наименьшее из чисел: 1 $\arctan(3, 3)$ 2 $\arctan(9, 33)$ 3 $\arctan(9, 32)$ 4 $\arctan(3)$ 5 $\arctan(\frac{\pi}{10})$
3	Среднее арифметическое всех чисел $n \in \mathbb{Z}$, при которых дробь $\frac{2n^2+7n+1}{n+2}$ является также целым числом, равно $\boxed{1 \ 5} \ \boxed{2} \ -1,5 \ \boxed{3} \ 1,5 \ \boxed{4} \ 2 \ \boxed{5} \ -2$
4	Все решения уравнения $\sin 4x - \operatorname{tg} x \cdot \operatorname{ctg} x = -1$ определяются формулой $(k \in Z)$ 1 $\frac{\pi}{4} + 2\pi k$ 2 $\frac{\pi}{4}k$ 3 $\pm \frac{\pi}{4} + 2\pi k$ 4 $\frac{\pi}{2}k$ 5 $\frac{\pi}{4} + \frac{\pi}{2}k$
5	Сумма координат точки пересечения прямых $y = -\frac{3,1}{3,9}x + \frac{12,1}{3,9}$ и
	$y = -\frac{3.9}{3.1}x + \frac{15.9}{3.1}$ равна 1 4 2 -4 3 -2 4 -3 5 3
6	Сумма нулей функции $y = (x^3 - 3x^2 - 4x) - \sqrt{\cos(\pi x) - 1}$ равна
	1 6 2 4 3 1 4 3 5 2
7	Значение выражения $\frac{1}{\sqrt{2a+1}+\sqrt{2a}}-\frac{1}{\sqrt{2a-1}-\sqrt{2a}}$ при $a>\frac{1}{2}$ равно $\boxed{1}$ $4a$ $\boxed{2}$ $\sqrt{2a+1}-\sqrt{2a-1}$ $\boxed{3}$ $\sqrt{2a-1}-\sqrt{2a+1}$ $\boxed{4}$ $2\sqrt{2a}$ $\boxed{5}$ $\frac{-2}{\sqrt{2a-1}-\sqrt{2a+1}}$
8	Значение выражения $\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}$ равно 1 $3\sqrt{3}$ 2 9 3 $\sqrt{6}$ 4 $2\sqrt{3}$ 5 3

I четверти 2 IV четверти 3 однозначно четверть указать нельзя

II четверти

5 III четверти

12	Выражение $\frac{\sin{(2-17,5\pi)}\cdot \mathrm{tg}{(9,5\pi-1)}}{\sin{(\sqrt{4-4\pi+\pi^2})}\cdot\cos{(\sqrt{4\pi^2+8\pi+4})}}$ равно $\frac{1}{4} - 2\sin^{-2}{1}$ $\frac{1}{2} 0, 5\sin^{-2}{1}$ $\frac{1}{5} -0, 5\sin^{-2}{1}$
13	Если $\alpha = 367^{\circ}30', \beta = 37^{\circ}30',$ то $\cos \alpha \cdot \cos \beta$ равно 1 $\frac{\sqrt{3} - \sqrt{2}}{4}$ 2 $\frac{\sqrt{3} + \sqrt{2}}{4}$ 3 $\frac{\sqrt{2} - 1}{4}$ 4 $\frac{\sqrt{2} - \sqrt{3}}{4}$ 5 $\frac{\sqrt{2} + 1}{4}$
14	Найдите сумму всех целых $a \in (-3;4)$, при которых уравнение $(x-a)\lg(3x-x^2-1)=0$ имеет два различных корня 1 2 2 0 3 3 4 5 5 4
15	В марте месячный проездной билет в городе стоил 660 рублей. Решением гордумы стоимость проездного в апреле увеличилась, что привело к снижению числа проданных билетов на 23%, а выручка от их продажи тем не менее увеличилась на 5%. Сколько стал стоить проездной билет в апреле? 1 900 рублей 2 860 рублей 3 780 рублей 4 935 рублей 5 792 рублей
16	Угловой коэффициент касательной к графику функции $f(x) = x - \cos{(x-1)^2} - \sin^2{x}$ в точке с абсциссой $x_0 = 1$ равен $\boxed{1 - \sin{2}} \qquad \boxed{2} \sin{2} \qquad \boxed{3} 1 + \sin{2} \qquad \boxed{4} 0 \qquad \boxed{5} 1 - \sin{2}$
17	Если для любого x выполняется соотношение $f(2x+1)=4x^2+1$, то разность между наибольшим и наименьшим значениями $f(x)$ при $x\in[0;2]$ равна 1 4 2 5 3 0 4 1 5 3
18	Система уравнений $x+ay=1,5$ и $(a+1)x+2y=-1,5$ имеет бесконечное множество решений при a , равном $\boxed{1 \cos 180^\circ \ 2 - \cos^{-2} 30^\circ \ 3 \sin 90^\circ \ 4 - \cos^{-2} 45^\circ \ 5 \ 2\cos^2 135^\circ}$

ZProfi2017-Math Заочный тур Профи матем 2017 Вариант 18

 $\boxed{\mathbf{2}} \log_{\pi} \log_{4} \sqrt{32}$

гоналями, противолежащим боковой стороне, средняя линия равна

3 1

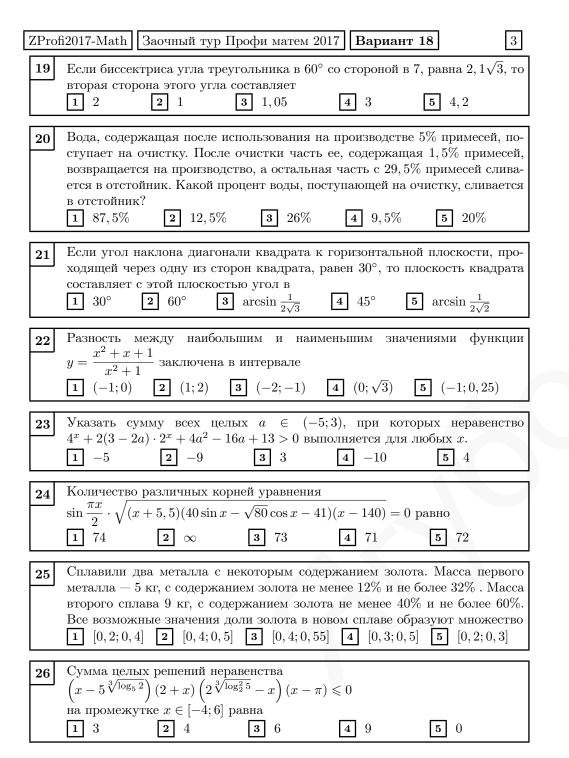
В равнобедренной трапеции с высотой $4-2\sqrt{3}$ и углом $\pi/6$ между ее диа-

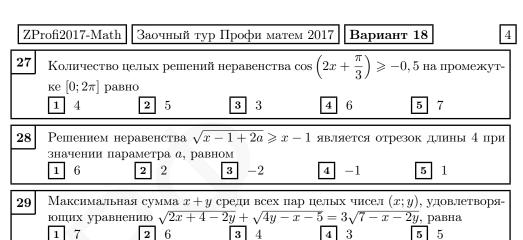
 $\log_{0,1}\log_{0,4}0,04$

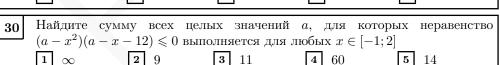
4 4

 $\log_{0,2} \log_{25} 125$

 $\sqrt{3}+2$


Положительным среди приведенных чисел является


2 2


 $\log_{0,5} \log_{0,5} 0, 5$

 $\boxed{\mathbf{4}} \quad \log_3 \log_3 2$

1 $2\sqrt{3}$

