Сравнение по модулю

Определение. Если числа a и b имеют одинаковые остатки при делении на число m, то говорят, что они сравнимы по модулю m. Обозначают это следующим образом: $a \equiv b$ или $a \equiv b \pmod{m}$.

- Определение второе, альтернативное. Числа а и в сравнимы по моду-0. лю m тогда и только тогда, когда число a-b делится на m.
- Свойства сравнений. 1.
 - (а) если $a \equiv b$ и $b \equiv c$, то $a \equiv c$;
 - (b) $a \equiv a + km$, где k целое число;
 - (c) если $a \equiv b$, то $a + c \equiv b + c$;
 - (d) если $a \equiv b$ и $c \equiv d$, то $a + c \equiv b + d$;
 - (е) если $a \equiv b$, то $ac \equiv bc$;
 - (f) если $a \equiv b$ и $c \equiv d$, то $ac \equiv bd$.
 - (**g**) если $a \equiv b$, то $a^n \equiv b^n$.
- 2. Найдите остаток от деления:
 - (a) $2015 \cdot 2016 \cdot 2017 \cdot 2018 \cdot 2019$ Ha 11;
 - (b) $1001 \cdot 1002 \cdot 1003 + 2001 \cdot 2001 \cdot 2002 \cdot 2003 \cdot 2004$ на 1000;
 - (c) $2017 \cdot 2016 \cdot 2015 + 2019 \cdot 2020 \cdot 2021$ Ha 2018.
- 3. Найдите остаток от деления:
 - (a) 8^{2018} на 7; (b) 6^{2018} на 7; (c) 3^{2018} на 7.
- Найдите остаток от деления:
 - (а) $9^{2018} + 13^{2018}$ на 11; (b) $9^{2019} + 13^{2019}$ на 11.

- **5**. Докажите, что:
 - (a) $2^{2016} = \frac{1}{5} 3^{2016};$ (b) $2^{2016} = \frac{1}{13} 3^{2016};$
 - (**c**) найдите еще одно простое число p, для которого $2^{2016} \equiv 3^{2016}$.