
ФИО	
класс	
Город (район РТ)	
Школа	

- 1. В калориметре находятся лед и вода при температуре 0° С. Масса льда и воды одинакова и равна 500 г. В калориметр вливают воду массой 1 кг при температуре 50° С. Какая температура установится в нем? (Удельная теплоемкость льда 2100 Дж/кг× $^{\circ}$ С; удельная теплоемкость воды 4200 Дж/кг× $^{\circ}$ С; удельная теплота плавления льда 3.4×10^{5} Дж/кг; температура плавления льда 0° С)
- 2. Определите, какое количество свинца, взятого при температуре 0^{0} С, можно расплавить за счет теплоты, полученной при сгорании 1 кг бензина, если КПД нагревателя 80%. (Температура плавления свинца 327^{0} С; удельная теплота плавления свинца 0.25×10^{5} Дж/кг; удельная теплоемкость свинца 130 Дж/кг \times^{0} С; удельная теплота сгорания бензина 44 МДж/кг)
- 3. Одинаковые резисторы включены в сеть параллельно, как показано на рис.1. Какой из резисторов потребляет больше электроэнергии. Почему? Сопротивление амперметра учитывать. Ответ обоснуйте.

4. Сколько времени будут нагреваться 1,5 литра воды от 20^{0} С до 100^{0} С в электрическом чайнике мощностью 600 Вт, если КПД чайника 80%? (удельная теплоемкость воды 4200 Дж/кг \times ⁰С). Ответ выразить в минутах.

ФИО	
класс	
Город (район РТ)	
Школа	

- 1.В углублении, сделанном во льду, вливают свинец. Сколько было влито свинца, если он остыл до температуры 0^{0} С и при этом растопил лед массой 270 г? Начальная температура льда 0^{0} С, свинца 400^{0} С. (Температура плавления свинца 327^{0} С; удельная теплота плавления свинца 0.25×10^{5} Дж/кг; удельная теплоемкость свинца 130 Дж/кг× 0 С, температура плавления льда 0^{0} С; удельная теплота плавления льда 3.4×10^{5} Дж/кг)
- 2. В алюминиевом сосуде массой 0,5 кг находится 2 кг льда при температуре 0^{0} С. На сколько градусов нагрелась вода, образовавшаяся после таяния льда, если было сожжено 50 г. керосина? КПД нагревателя 50%. (удельная теплоемкость алюминия 900 Дж/кг \times^{0} С; Удельная теплоемкость льда 2100 Дж/кг \times^{0} С; удельная теплоемкость воды 4200 Дж/кг \times^{0} С; удельная теплота плавления льда 3,4 \times 10⁵ Дж/кг; температура плавления льда 0^{0} С; удельная теплота сгорания керосина 43 МДж/кг)
- 3. Имеются пять электрических ламп напряжением 110В каждая и мощностью 40, 40, 40, 60, 60, Вт соответственно. Как следует включить их в сеть напряжением 220 В, чтобы все они работали в нормальном режиме? Нарисуйте схему, ответ обоснуйте.
- 4. Электрокипятильник со спиралью сопротивлением 160 Ом поместили в сосуд, содержащий 0,5 кг воды при 20^{0} С и включили его в сеть с напряжением 220 В. Через сколько времени вода закипит? КПД кипятильника принять равным 80%. (температура кипения 100^{0} С; удельная теплоемкость воды $4200~\text{Дж/кг}\times^{0}$ С) Ответ выразить в минутах.

ФИО	
класс	
Город (район РТ)	
Школа	

- 1.В термос с водой поместили лед при температуре -10 0 С. Масса воды 400г, масса льда 10 г, начальная температура воды 20^{0} С. Определите конечную температуру воды в термосе. (Удельная теплоемкость льда 2100 Дж/кг× 0 С; удельная теплоемкость воды 4200 Дж/кг× 0 С; удельная теплота плавления льда 3.4×10^{5} Дж/кг; температура плавления льда 0^{0} С)
- 2. Сколько дров надо сжечь в печке с КПД 40%, чтобы получить из 200 кг снега, взятого при температуре -10 0 C воду при 20 0 C? (удельная теплота сгорания дров сухих 12МДж/кг; Удельная теплоемкость льда 2100 Дж/кг× 0 C; удельная теплоемкость воды 4200 Дж/кг× 0 C; удельная теплота плавления льда 3,4 × 10 5 Дж/кг; температура плавления льда 0^{0} C)
- 3. Две электрические плитки включены в сеть параллельно. Сопротивление первой плитки 60 Ом, второй 24 Ом. Какая из плиток потребляет большую мощность и во сколько раз? Почему? Ответ обоснуйте.
- 4. Кипятильник с КПД 80% изготовлен из нихромой проволоки сечением 0,84 мм 2 и включен в сеть с напряжением 220 В. За 20 минут с его помощью было нагрето 4 л воды от 10^{0} С до 90^{0} С. Какова длина проволоки, из которой изготовлен кипятильник? (удельное сопротивление нихрома 1,1 Ом \times мм 2 /м; удельная теплоемкость воды 4200 Дж/кг \times 0С)

ФИО	
класс	
Город (район РТ)	
Школа	

- 1.В калориметр с водой объемом 1 л опустили мокрый снег. Масса снега 250 г, начальная температура воды 20 0 С. После плавления снега температура воды в калориметре стала равной 5 0 С. Сколько воды содержалось в снегу? (Удельная теплоемкость льда 2100 Дж/кг× 0 С; удельная теплоемкость воды 4200 Дж/кг× 0 С; удельная теплота плавления льда 3.4×10^{5} Дж/кг; температура плавления льда 0^{0} С)
- 2. Сколько необходимо сжечь спирта, чтобы 2 кг льда, взятого при - 5^{0} С, расплавить и 1 кг полученной воды превратить в пар? КПД спиртовки 40%. (удельная теплоемкость воды 4200 Дж/кг× 0 С; удельная теплота плавления льда 3.4×10^{5} Дж/кг; температура плавления льда 0^{0} С; удельная теплота сгорания спирта 26 МДж/кг, удельная теплота парообразования воды 2,3 МДж/кг)
- 3. Вагон освещается 10 одинаковыми лампами, включенными последовательно. Как изменится расход энергии (во сколько раз), если уменьшить число ламп до пяти? Ответ обоснуйте математически.
- 4. Сколько времени будут нагреваться 1,5 л воды от 20° С до 100° С в электрическом чайнике мощностью 600 Вт, если КПД чайника 80%? Выразите ответ в минутах. (удельная теплоемкость воды $4200~\text{Дж/кг}\times^{\circ}$ С)