2014 год

1 вариант

- 1. Найдите в явном виде натуральное число, заданное выражением $\sqrt{7-4\sqrt{3}}\,(8+4\sqrt{3}).$
- **2.** Найти максимальное значение функции $y = \log_{1/2} (x^2 6x + 17)$.
- **3.** Найдите все положительные x, удовлетворяющие неравенству $x^{3x+7} > x^{12}$.
- **4.** Решите уравнение $\cos^2 x \cos x \sin^2 \left(\frac{5x}{4} \frac{5\pi}{12} \right) + \frac{1}{4} = 0.$
- **5.** Окружности Ω_1 и Ω_2 с центрами в точках O_1 и O_2 касаются внешним образом в точке A. Общая внешняя касательная к этим окружностям касается Ω_1 и Ω_2 соответсвенно в точках B_1 и B_2 . Общая касательная к окружностям, проходящая через точку A, пересекает отрезок B_1B_2 в точке C. Прямая, делящая угол ACO_2 пополам, пересекает прямые O_1B_1 , O_1O_2 , O_2B_2 в точках D_1 , L, D_2 соответсвенно. Найдите отношение $LD_2:O_2D_2$, если известно, что $CD_1=CO_1$.
 - 6. Найдите все положительные x, y, удовлетворяющие системе уравнений

$$\begin{cases} x^{3/2} + y = 16\\ x + y^{2/3} = 8 \end{cases}$$

- 7. В основании прямой призмы лежит правильный треугольник со стороной 1. Высота призмы равна $\sqrt{2}$. Найдите расстояние между скрещивающимися диагоналями боковых граней.
 - **8.** Пусть

$$f(x,y) = \sqrt{-6x^2 - 14y^2 - 18xy + 6} + y,$$

$$g(x,y) = -\sqrt{-6x^2 - 14y^2 - 18xy + 6} + y.$$

Найдите все значения, которые может принимать хотя бы одна из этих функций.

- **1.** Найдите в явном виде натуральное число, заданное выражением $\sqrt{5-2\sqrt{6}}\,(\sqrt{2}8+\sqrt{3})$.
- **2.** Найти максимальное значение функции $y = \log_{1/3} (x^2 + 4x + 31)$.
- **3.** Найдите все положительные x, удовлетворяющие неравенству $x^{-5x+7} > x^{-7}$.
- **4.** Решите уравнение $\sin^2 x + \sqrt{2} |\sin x| \cos \left(\frac{5x}{2} \frac{5\pi}{8}\right) + \frac{1}{2} = 0.$
- 5. Окружности Ω_1 и Ω_2 с центрами в точках O_1 и O_2 касаются внешним образом в точке A. Общая внешняя касательная к этим окружностям касается Ω_1 в точке B и пересекает в точке C общую касательную этих окружностей, проходящую через точку A. Прямая, делящая угол

 ACO_1 пополам, пересекает прямые O_1O_2 и BO_1 в точках L и D соответсвенно. Найдите CO_2 , если известно, что $LO_1=2$, а прямые CO_2 и DO_2 перпендикулярны.

6. Найдите все x, y на интервале $(0, \frac{\pi}{2})$, удовлетворяющие системе уравнений

$$\begin{cases} \frac{1}{\cos^3 x} + \frac{1}{\sin^3 y} = 16\\ \operatorname{tg}^2 x + \operatorname{ctg}^2 y = 6 \end{cases}$$

- 7. В основании прямой призмы лежит квадрат со стороной 1. Высота призмы равна $\sqrt{7}$. Найдите расстояние между большой диагональю призмы и скрещивающейся с ней диагональю боковой грани.
 - **8.** Пусть

$$f(x,y) = \sqrt{-5x^2 - 13y^2 - 16xy + 2} + y,$$

$$g(x,y) = -\sqrt{-5x^2 - 13y^2 - 16xy + 2} + y.$$

Найдите все значения, которые может принимать хотя бы одна из этих функций.

- **1.** Найдите в явном виде натуральное число, заданное выражением $\sqrt{6+4\sqrt{2}}\,(8-4\sqrt{2})$.
- **2.** Найти максимальное значение функции $y = \log_{1/2} (x^2 8x + 20)$.
- **3.** Найдите все положительные x, удовлетворяющие неравенству $x^{4x-5} > x^{-2}$.
- **4.** Решите уравнение $\sin^2 x \sin x \cos^2 \left(\frac{5x}{4} \frac{17\pi}{24} \right) + \frac{1}{4} = 0.$
- **5.** Окружности Ω_1 и Ω_2 с центрами в точках O_1 и O_2 касаются внешним образом в точке A. Общая внешняя касательная к этим окружностям касается Ω_1 и Ω_2 соответсвенно в точках B_1 и B_2 . Общая касательная к окружностям, проходящая через точку A, пересекает отрезок B_1B_2 в точке C. Прямая, делящая угол ACO_2 пополам, пересекает прямые O_1B_1 , O_1O_2 , O_2B_2 в точках D_1 , L, D_2 соответсвенно. Найдите отношение CD_1 : CO_1 , если известно, что $LD_2 = O_2D_2$.
 - **6.** Найдите все положительные x, y, удовлетворяющие системе уравнений

$$\begin{cases} x + y^{3/2} = 54 \\ x^{2/3} + y = 18 \end{cases}$$

- 7. В основании прямой призмы лежит правильный треугольник со стороной 2. Высота призмы равна $\sqrt{3}$. Найдите расстояние между скрещивающимися диагоналями боковых граней.
 - **8.** Пусть

$$f(x,y) = \sqrt{-5x^2 - 17y^2 - 18xy + 12} + y,$$

$$g(x,y) = -\sqrt{-5x^2 - 17y^2 - 18xy + 12} + y.$$

Найдите все значения, которые может принимать хотя бы одна из этих функций.

4 вариант

- **1.** Найдите в явном виде натуральное число, заданное выражением $\sqrt{7+2\sqrt{10}}\,(\sqrt{5}-\sqrt{3})$.
- **2.** Найти максимальное значение функции $y = \log_{1/3}{(x^2 + 10x + 34)}$.
- **3.** Найдите все положительные x, удовлетворяющие неравенству $x^{-7x+5} > x^{-4}$.
- **4.** Решите уравнение $\cos^2 x + \sqrt{2} |\cos x| \sin \left(\frac{5x}{2} \frac{\pi}{8}\right) + \frac{1}{2} = 0.$
- **5.** Окружности Ω_1 и Ω_2 с центрами в точках O_1 и O_2 касаются внешним образом в точке A. Общая внешняя касательная к этим окружностям касается Ω_1 в точке B и пересекает в точке C общую касательную этих окружностей, проходящую через точку A. Прямая, делящая угол ACO_1 пополам, пересекает прямые O_1O_2 и BO_1 в точках L и D соответсвенно. Найдите LO_1 , если известно, что $CO_2=2$, а прямые CO_2 и DO_2 перпендикулярны.
 - **6.** Найдите все x, y на интервале $(0, \frac{\pi}{2})$, удовлетворяющие системе уравнений

$$\begin{cases} \frac{1}{\cos^3 x} + \frac{1}{\sin^3 y} = 54\\ tg^2 x + ctg^2 y = 16 \end{cases}$$

- 7. В основании прямой призмы лежит квадрат со стороной 1. Высота призмы равна $\sqrt{3}$. Найдите расстояние между большой диагональю призмы и скрещивающейся с ней диагональю боковой грани.
 - 8. Пусть

$$f(x,y) = \sqrt{-6x^2 - 11y^2 - 16xy + 5} + y,$$

$$g(x,y) = -\sqrt{-6x^2 - 11y^2 - 16xy + 5} + y.$$

Найдите все значения, которые может принимать хотя бы одна из этих функций.

Ответы

1 вариант

1. 4. **2.** -3. **3.**
$$x \in (0; 1) \cup \left(\frac{5}{3}; +\infty\right)$$
. **4.** $\frac{7\pi}{3} + 4\pi n, n \in \mathbb{Z}$. **5.** $1:1$. **6.** $x = 4, y = 8$. **7.** $\frac{\sqrt{2}}{3}$. **8.** $\left[-3\sqrt{2}; 3\sqrt{2}\right]$.

1. 1. **2.** -3. **3.**
$$x \in (0; 1) \cup \left(\frac{5}{3}; +\infty\right)$$
. **4.** $\frac{9\pi}{4} + 4\pi n, n \in \mathbb{Z}$. **5.** 4. **6.** $x = \frac{\pi}{3}, y = \frac{\pi}{6}$. **7.** $\frac{\sqrt{7}}{6}$. **8.** $\left[-2\sqrt{3}; 2\sqrt{3}\right]$.

3 вариант

1. 8. **2.** -2. **3.** $x \in \left(0; \frac{4}{5}\right) \cup (1; +\infty)$. **4.** $\frac{13\pi}{6} + 4\pi n, n \in \mathbb{Z}$. **5.** 1:1. **6.** x = 27, y = 9. **7.** $\frac{\sqrt{3}}{2}$. **8.** $\left[-3\sqrt{3}; 3\sqrt{3}\right]$.

1. 3. 2. -2. 3.
$$x \in (0; 1) \cup \left(\frac{9}{7}; +\infty\right)$$
. 4. $\frac{9\pi}{4} + 4\pi n, n \in \mathbb{Z}$. 5. 1. 6. $x = \arcsin \frac{1}{3}, y = \arccos \frac{1}{3}$. 7. $\frac{\sqrt{3}}{4}$. 8. $\left[-2\sqrt{5}; 2\sqrt{5}\right]$.