IX Международная Жаутыковская олимпиада по математике Алматы, 2013

15 января 2013 года, 9.00–13.30 Первый день

(Каждая задача оценивается в 7 баллов)

- **1.** Дана трапеция ABCD ($AD \square BC$), в которой $\angle ABC > 90^\circ$. На боковой стороне AB отмечена точка M. Обозначим через O_1 и O_2 центры описанных около треугольников MAD и MBC окружностей соответственно. Известно, что описанные около треугольников MO_1D и MO_2C окружности вторично пересекаются в точке N. Докажите, что прямая O_1O_2 проходит через точку N.
- **2.** Найдите все нечетные натуральные n>1 такие, что существует перестановка $a_1,a_2,...,a_n$ чисел 1,2,...,n, в которой при всех $k,1\leq k\leq n$, одно из чисел $a_k^2-a_{k+1}-1$ и $a_k^2-a_{k+1}+1$ делится на n (здесь мы считаем $a_{n+1}=a_1$). Т
- **3.** Пусть a, b, c, d > 0, abcd = 1. Докажите неравенство

$$\frac{(a-1)(c+1)}{1+bc+c} + \frac{(b-1)(d+1)}{1+cd+d} + \frac{(c-1)(a+1)}{1+da+a} + \frac{(d-1)(b+1)}{1+ab+b} \ge 0.$$

IX International Zhautykov Olympiad in Mathematics Almaty, 2013

15 January, 2013, 9.00–13.30 First day

(Each problem is worth 7 points)

- **1.** Given a trapezoid ABCD ($AD \square BC$) with $\angle ABC > 90^\circ$. Point M is chosen on the lateral side AB. Let O_1 and O_2 be the circumcenters of the triangles MAD and MBC respectively. The circumcircles of the triangles MO_1D and MO_2C meet again at the point N. Prove that the line O_1O_2 passes through the point N.
- **2.** Find all odd positive integers n > 1 such that there is a permutation $a_1, a_2, ..., a_n$ of the numbers 1, 2, ..., n, where n divides one of the numbers $a_k^2 a_{k+1} 1$ and $a_k^2 a_{k+1} + 1$ for each $k, 1 \le k \le n$ (we assume $a_{n+1} = a_1$).
- **3.** Let a,b,c,d>0 and abcd=1. Prove that

$$\frac{(a-1)(c+1)}{1+bc+c} + \frac{(b-1)(d+1)}{1+cd+d} + \frac{(c-1)(a+1)}{1+da+a} + \frac{(d-1)(b+1)}{1+ab+b} \ge 0.$$