Единый государственный экзамен по МАТЕМАТИКЕ Тренировочный вариант № 25

Профильный уровень Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 8 заданий базового уровня сложности с кратким ответов. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 задания повышенного и высокого уровня сложности с развёрнутым ответом.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов N = 1.

При выполнении заданий 13–19 требуется записать полное решение и ответ в бланке ответов № 2. Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки. При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы. Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов. После завершения работы проверьте, что ответ на каждое задание в бланках ответов № 1 и № 2 записан под правильным номером.

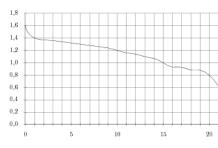
ЖЕЛАЕМ УСПЕХА!

Справочные материалы

$$\sin^{2} \alpha + \cos^{2} \alpha = 1$$

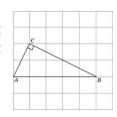
$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^{2} \alpha - \sin^{2} \alpha$$


$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

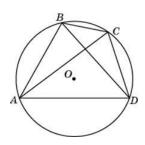
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

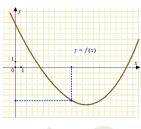
Ответом к заданиям 1-12 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ №1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке. Единицы измерения писать не нужно.


Часть 1

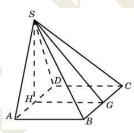
- **1.** Одна таблетка лекарства весит 20 мг и содержит 5% активного вещества. Ребёнку в возрасте до 6 месяцев врач прописывает 1,4 мг активного вещества на каждый килограмм веса в сутки. Сколько таблеток этого лекарства следует дать ребёнку в возрасте четырёх месяцев и весом 5 кг в течение суток?
- 2. При работе фонарика батарейка постепенно разряжается, и напряжение в электрической цепи фонарика падает. На рисунке показана зависимость напряжения в цепи от времени работы фонарика. На горизонтальной оси отмечается

время работы фонарика в часах, на вертикальной оси — напряжение в вольтах. Определите по рисунку, через сколько часов работы фонарика напряжение уменьшится до 1,4 вольт.


3. Найдите радиус окружности, описанной около прямоугольного треугольника ABC, если стороны квадратных клеток равны 1.


4. За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.

5. Найдите корень уравнения $\log_2(12-6x) = 3\log_2 3$.


6. Четырехугольник ABCD вписан в окружность. Угол ABC равен 105° , угол CAD равен 35° . Найдите угол ABD. Ответ дайте в градусах.

7. На рисунке изображен график функции y = f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 10. Найдите значение производной функции в точке $x_0 = 10$.

8. Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60° . Высота пирамиды равна 6. Найдите объем пирамиды.

Часть 2

9. Найдите
$$\frac{a+9b+16}{a+3b+8}$$
, если $\frac{a}{b}=3$.

10. Расстояние от наблюдателя, находящегося на небольшой высоте h м над землей, выраженное в километрах, до наблюдаемой Rh

им линии горизонта вычисляется по формуле $l = \sqrt{\frac{R\,h}{500}}\,,\,\,$ где

 $R=6400~{\rm km}$ — радиус Земли. На какой наименьшей высоте следует располагаться наблюдателю, чтобы он видел горизонт на расстоянии не менее 4 километров? Ответ выразите в метрах.

- 11. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?
- **12.** Найдите наименьшее значение функции $y = x^3 19,5x^2 + 90x + 22$ на отрезке [8;13]

Для записи решений и ответов на задания 13-19 используйте БЛАНК ОТВЕТОВ №2. Запишите сначала номер выполняемого задания (13, 14 и т.д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

13. а) Решите уравнение

$$\log_2^2(x^2) - 16\log_2(2x) + 31 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку [3;6]

- **14**. Дана прямая призма $ABCA_1B_1C_1$. Плоскость, проходящая через центр основания $A_1B_1C_1$ и середину K ребра BC, параллельна прямой AB. Эта плоскость пересекает прямую CC_1 в точке L.
 - а) Докажите, что $CL = 3CC_1$.
- б) Найдите угол между прямыми KL и AC_1 , если $\angle ACB = 90^\circ$ и $AA_1 = AC = \frac{1}{4}BC$.
 - 15. Решите неравенство:

$$\log_2\left(\log_2\left(7x^2-6x\right)\right) \le 2.$$

- **16.** Дан треугольник ABC со сторонами AB = 4, BC = 6 и AC = 8.
- а) Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне BC.
- б) Найдите длину биссектрисы треугольника ABC, проведённой из вершины A.
- **17.** В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
- каждый январь долг возрастает на r% по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

Известно, что если каждый год выплачивать по 292 820 рублей, то кредит будет полностью погашен за 4 года, а если ежегодно выплачивать по 534 820 рублей, то кредит будет полностью погашен за 2 года. Найдите число r.

18. Найдите все значения параметра a, при каждом из которых система уравнений

$$\begin{cases} 3 \cdot 2^{|y|} + 5|y| + 3x + 4 = 5y^2 + 3a, \\ x^2 + y^2 = 1 \end{cases}$$

имеет единственное решение.

- 19. Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более $\frac{2}{11}$ от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более $\frac{2}{5}$ от общего числа учащихся группы, посетивших кино.
- а) Могло ли быть в группе 9 мальчиков, если дополнительно известно, что всего в группе было 20 учащихся?
- б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 20 учащихся?
- в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а) и б).