Простейшие тригонометрические уравнения

Мы приступаем к изучению тригонометрических уравнений — центральной темы всего тригонометрического раздела.

Пусть a — некоторое число. **Простейшие тригонометрические уравнения** — это уравнения следующих видов:

$$\cos x = a$$
, $\sin x = a$, $\tan x = a$, $\cot x = a$.

Решить простейшее тригонометрическое уравнение — это значит описать множество значений переменной x, для которых данная тригонометрическая функция принимает заданное значение a.

Решение любого тригонометрического уравнения сводится, как правило, к решению одного или нескольких простейших тригонометрических уравнений.

Простейшие тригонометрические уравнения мы будем решать с помощью тригонометрической окружности.

Уравнение $\cos x = a$

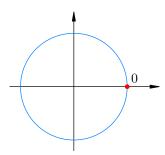
Напомним, что по определению $\cos x$ — это абсцисса точки x тригонометрической окружности, которая отвечает углу x. Этого достаточно для рассмотрения уравнения $\cos x = a$.

Если a>1 или a<-1, то уравнение $\cos x=a$ не имеет решений. В самом деле, косинус не может принимать значений, по модулю превосходящих единицу.

Если же $|a| \leqslant 1$, то уравнение $\cos x = a$ имеет решения, причём решений будет бесконечно много (вспомните предыдущую статью «Обратные тригонометрические функции»: прямая y = a пересекает график функции $y = \cos x$ в бесконечном множестве точек). Сейчас мы научимся описывать все эти решения.

1.
$$\cos x = 1$$
.

Нас интересуют точки тригонометрической окружности, которые имеют абсциссу 1. Легко видеть, что имеется лишь одна такая точка:



Эта точка соответствует бесконечному множеству углов: $0, 2\pi, -2\pi, 4\pi, -4\pi, 6\pi, -6\pi, \dots$ Все перечисленные углы получаются из нулевого угла прибавлением целого числа полных углов 2π (то есть нескольких полных оборотов как в одну, так и в другую сторону).

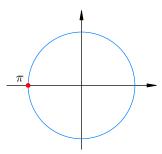
Следовательно, все эти углы могут быть записаны одной формулой:

$$x = 2\pi n, n \in \mathbb{Z}.$$

Это и есть множество решений уравнения $\cos x = 1$.

2. $\cos x = -1$.

На тригонометрической окружности имеется лишь одна точка с абсциссой -1:



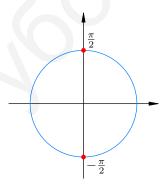
Эта точка соответствует углу π и всем углам, отличающихся от π на несколько полных оборотов в обе стороны, то есть на целое число полных углов. Следовательно, все решения уравнения $\cos x = -1$ записываются формулой:

$$x = \pi + 2\pi n, n \in \mathbb{Z}.$$

Заодно вспоминаем первое правило, сформулированное нами в статье «Тригонометрическая окружность»:

- для описания множества углов, отвечающих одной точке тригонометрической окружности, нужно взять какой-либо один угол из этого множества и прибавить $2\pi n$.
- **3.** $\cos x = 0$.

Отмечаем на тригонометрической окружности точки с нулевой абсциссой. Их две:



Эти точки образуют диаметральную пару (то есть служат концами диаметра тригонометрической окружности). Все углы, отвечающие точкам диаметральной пары, отличаются друг от друга на целое число углов π (то есть на целое число полуоборотов как в одну, так и в другую сторону).

Соответственно, вспоминаем второе правило из статьи «Тригонометрическая окружность»:

• для описания множества углов, отвечающих диаметральной паре точек тригонометрической окружности, нужно взять один угол из этого множества и прибавить πn .

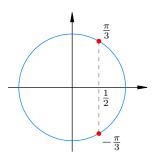
Следовательно, все решения уравнения $\cos x = 0$ описываются формулой:

$$x = \frac{\pi}{2} + \pi n, \, n \in \mathbb{Z}.$$

2

4. $\cos x = \frac{1}{2}$.

Имеем вертикальную пару точек с абсциссой 1/2:



Все углы, соответствующие верхней точке, описываются формулой:

$$x_1 = \frac{\pi}{3} + 2\pi n, \ n \in \mathbb{Z}.$$

Все углы, соответствующие нижней точке, описываются формулой:

$$x_2 = -\frac{\pi}{3} + 2\pi n, \ n \in \mathbb{Z}.$$

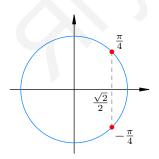
Обе серии решений можно описать одной формулой:

$$x = \pm \frac{\pi}{3} + 2\pi n, \ n \in \mathbb{Z}.$$

Именно так мы и записываем решения уравнения $\cos x = \frac{1}{2}$.

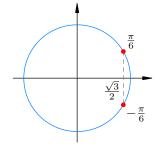
Нижеследующие уравнения решаются совершенно аналогично. Для каждого уравнения мы приводим лишь рисунок и ответ.

5.
$$\cos x = \frac{\sqrt{2}}{2}$$
.



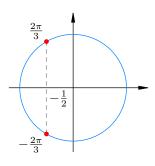
$$x = \pm \frac{\pi}{4} + 2\pi n, \ n \in \mathbb{Z}.$$

6.
$$\cos x = \frac{\sqrt{3}}{2}$$
.



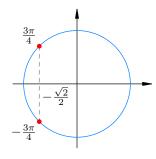
$$x = \pm \frac{\pi}{6} + 2\pi n, \, n \in \mathbb{Z}.$$

7.
$$\cos x = -\frac{1}{2}$$
.



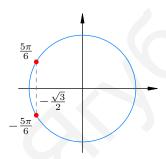
$$x = \pm \frac{2\pi}{3} + 2\pi n, \ n \in \mathbb{Z}.$$

8.
$$\cos x = -\frac{\sqrt{2}}{2}$$
.



$$x = \pm \frac{3\pi}{4} + 2\pi n, \ n \in \mathbb{Z}.$$

9.
$$\cos x = -\frac{\sqrt{3}}{2}$$
.

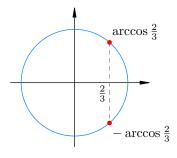


$$x = \pm \frac{5\pi}{6} + 2\pi n, \ n \in \mathbb{Z}.$$

До сих пор мы рассматривали уравнения, в правой части которых стояли табличные значения косинуса (а именно, $0, \pm 1, \pm 1/2, \pm \sqrt{2}/2, \pm \sqrt{3}/2$). Как быть в иных случаях?

10.
$$\cos x = \frac{2}{3}$$
.

Имеем вертикальную пару точек с абсциссой 2/3:

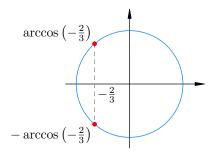


Верхняя точка отвечает углу $\arccos \frac{2}{3}$ (напомним, что значения арккосинуса принадлежат отрезку $[0;\pi]$). Стало быть, решения данного уравнения описываются формулой:

$$x = \pm \arccos \frac{2}{3} + 2\pi n, n \in \mathbb{Z}.$$

11.
$$\cos x = -\frac{2}{3}$$
.

Имеем вертикальную пару точек с абсциссой -2/3:



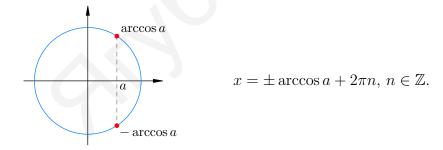
Записываем ответ:

$$x = \pm \arccos\left(-\frac{2}{3}\right) + 2\pi n, \ n \in \mathbb{Z}.$$

Напомним, что арккосинує не является ни чётной, ни нечётной функцией, поэтому знак минує у аргумента арккосинуєа так и оставляем. При желании можно воспользоваться соотношением: $\operatorname{arccos}\left(-\frac{2}{3}\right) = \pi - \operatorname{arccos}\frac{2}{3}$.

12.
$$\cos x = a$$
.

Теперь ясно, как выглядит решение уравнения в общем случае (разумеется, при $|a| \leqslant 1$).



Данная формула обобщает все случаи, рассмотренные выше.

Уравнение $\sin x = a$

Для рассмотрения уравнения $\sin x = a$ достаточно определения синуса: $\sin x$ — это ордината точки x тригонометрической окружности, которая отвечает углу x.

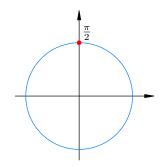
При a>1 или a<-1 уравнение $\sin x=a$ не имеет решений, поскольку синус не может принимать значений, по модулю превосходящих единицу.

Если же $|a| \leq 1$, то уравнение $\sin x = a$ имеет бесконечно много решений (снова вспомните статью «Обратные тригонометрические функции»: прямая y = a пересекает график функции $y = \sin x$ в бесконечном множестве точек).

Мы начинаем с уравнений, в правой части которых стоит табличное значение синуса.

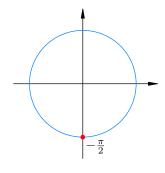
1. $\sin x = 1$.

На тригонометрической окружности имеется единственная точка с ординатой 1:



$$x = \frac{\pi}{2} + 2\pi n, \, n \in \mathbb{Z}.$$

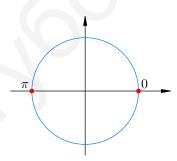
2. $\sin x = -1$.



$$x=-\frac{\pi}{2}+2\pi n,\,n\in\mathbb{Z}.$$

3. $\sin x = 0$.

На тригонометрической окружности имеются две точки с нулевой ординатой:

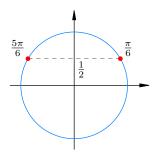


Решения данного уравнения описываются простой формулой:

$$x = \pi n, n \in \mathbb{Z}.$$

4. $\sin x = \frac{1}{2}$.

Возникает горизонтальная пара точек с ординатой 1/2:



6

Правой точке соответствуют углы:

$$x_1 = \frac{\pi}{6} + 2\pi n, \ n \in \mathbb{Z}.$$

Левой точке соответствуют углы:

$$x_2 = \frac{5\pi}{6} + 2\pi n, \ n \in \mathbb{Z}.$$

Обе серии решений x_1 и x_2 можно записать в виде совокупности:

$$x = \frac{\pi}{6} + 2\pi n,$$

$$x = \frac{5\pi}{6} + 2\pi n, n \in \mathbb{Z}.$$

Оказывается, существует одна-единственная формула, объединяющая обе серии. Выглядит она так:

$$x = (-1)^k \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}.$$

Давайте посмотрим, что получается при чётных k. Если k=2n, то

$$x = (-1)^{2n} \frac{\pi}{6} + \pi \cdot 2n = \frac{\pi}{6} + 2\pi n.$$

Мы получили первую серию решений x_1 . А если k нечётно, k=2n+1, то

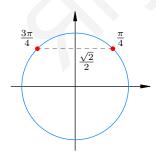
$$x = (-1)^{2n+1} \frac{\pi}{6} + \pi(2n+1) = -\frac{\pi}{6} + 2\pi n + \pi = \frac{5\pi}{6} + 2\pi n.$$

Это вторая серия x_2 .

В качестве множителя при $(-1)^k$ обычно ставится правая точка, в данном случае $\pi/6$.

Нижеследующие уравнения решаются точно так же. Мы приводим рисунок, запись ответа в виде совокупности двух серий и объединяющую формулу.

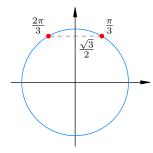
5.
$$\sin x = \frac{\sqrt{2}}{2}$$
.



$$\begin{bmatrix} x = \frac{\pi}{4} + 2\pi n, \\ x = \frac{3\pi}{4} + 2\pi n, n \in \mathbb{Z}; \end{bmatrix}$$

$$x = (-1)^k \frac{\pi}{4} + \pi k, \ k \in \mathbb{Z}.$$

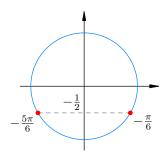
6.
$$\sin x = \frac{\sqrt{3}}{2}$$
.



$$\begin{bmatrix} x = \frac{\pi}{3} + 2\pi n, \\ x = \frac{2\pi}{3} + 2\pi n, n \in \mathbb{Z}; \end{bmatrix}$$

$$x = (-1)^k \frac{\pi}{3} + \pi k, \ k \in \mathbb{Z}.$$

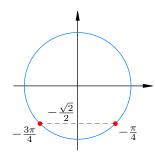
7.
$$\sin x = -\frac{1}{2}$$
.



$$\begin{bmatrix} x = -\frac{\pi}{6} + 2\pi n, \\ x = -\frac{5\pi}{6} + 2\pi n, n \in \mathbb{Z}; \end{bmatrix}$$

$$x = (-1)^{k+1} \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}.$$

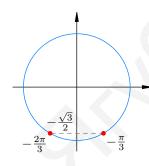
8.
$$\sin x = -\frac{\sqrt{2}}{2}$$
.



$$\left[\begin{array}{l} x=-\frac{\pi}{4}+2\pi n,\\ x=-\frac{3\pi}{4}+2\pi n,\,n\in\mathbb{Z}; \end{array} \right.$$

$$x = (-1)^{k+1} \frac{\pi}{4} + \pi k, \ k \in \mathbb{Z}.$$

9.
$$\sin x = -\frac{\sqrt{3}}{2}$$
.



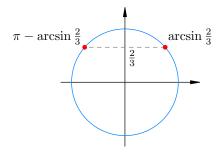
$$\begin{bmatrix} x = -\frac{\pi}{3} + 2\pi n, \\ x = -\frac{2\pi}{3} + 2\pi n, n \in \mathbb{Z}; \end{bmatrix}$$

$$x = (-1)^{k+1} \frac{\pi}{3} + \pi k, \ k \in \mathbb{Z}.$$

Теперь перейдём к уравнениям с нетабличным значением синуса в правой части.

10.
$$\sin x = \frac{2}{3}$$
.

Имеем горизонтальную пару точек с ординатой 2/3:



Правая точка отвечает углу $\arcsin\frac{2}{3}$ (напомним, что значения арксинуса принадлежат отрезку $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$). Обратите внимание на выражение для угла, отвечающего левой точке! Записываем решения данного уравнения в виде совокупности:

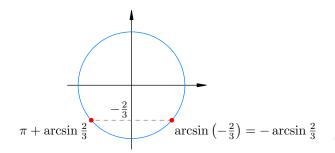
$$\begin{bmatrix} x = \arcsin \frac{2}{3} + 2\pi n, \\ x = \pi - \arcsin \frac{2}{3} + 2\pi n, n \in \mathbb{Z}. \end{bmatrix}$$

Объединяющая формула:

$$x = (-1)^k \arcsin \frac{2}{3} + \pi k, \ k \in \mathbb{Z}.$$

11.
$$\sin x = -\frac{2}{3}$$
.

Смотрите рисунок и формулы. Вам уже не составит труда разобраться в этой ситуации. Мы воспользовались здесь нечётностью аркинуса.

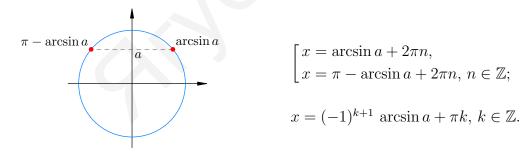


$$\begin{bmatrix} x = -\arcsin\frac{2}{3} + 2\pi n, \\ x = \pi + \arcsin\frac{2}{3} + 2\pi n, n \in \mathbb{Z}; \end{bmatrix}$$

$$x = (-1)^{k+1} \arcsin \frac{2}{3} + \pi k, \ k \in \mathbb{Z}.$$

12. $\sin x = a$.

Теперь нам ясно, как выглядят решения в общем случае (разумеется, при $|a| \leq 1$).



Данные формулы обобщают разобранные выше случаи.

Уравнение tg x = a

Вспомним, что тангенс может принимать любые значения (область значений функции $y = \operatorname{tg} x$ есть всё множество \mathbb{R}). Стало быть, уравнение $\operatorname{tg} x = a$ имеет решения при любом a.

1. tg x = 0.

Будучи записано в виде

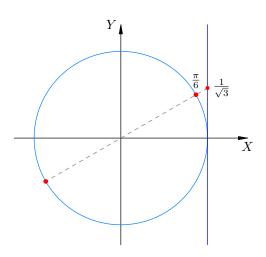
$$\frac{\sin x}{\cos x} = 0,$$

данное уравнение равносильно уравнению $\sin x = 0$. Его решения, как мы знаем, имеют вид:

$$x = \pi n, n \in \mathbb{Z}.$$

2. $tg x = \frac{1}{\sqrt{3}}$.

Здесь нам уже понадобится линия тангенсов. Имеем диаметральную пару:

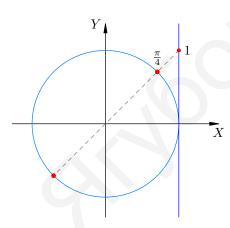


Пишем ответ:

$$x = \frac{\pi}{6} + \pi n, \, n \in \mathbb{Z}.$$

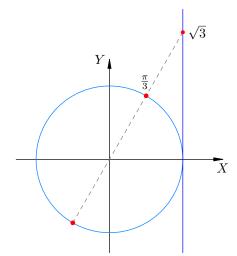
Нижеследующие уравнения решаются аналогично. Мы приводим лишь рисунки и ответы.

3. tg x = 1.



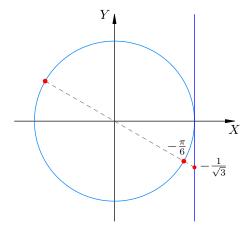
$$x = \frac{\pi}{4} + \pi n, \, n \in \mathbb{Z}.$$

4.
$$tg x = \sqrt{3}$$
.



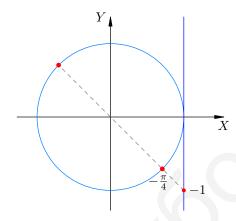
$$x = \frac{\pi}{3} + \pi n, \, n \in \mathbb{Z}.$$

5. $\operatorname{tg} x = -\frac{1}{\sqrt{3}}$.



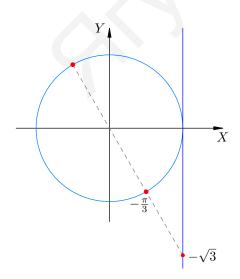
$$x = -\frac{\pi}{6} + \pi n, n \in \mathbb{Z}.$$

6. tg x = -1.



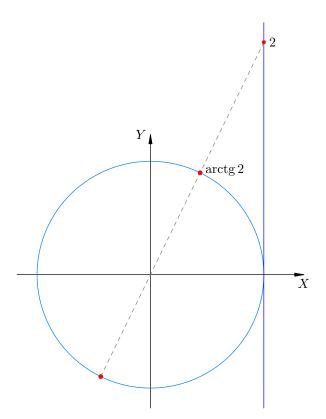
$$x = -\frac{\pi}{4} + \pi n, \ n \in \mathbb{Z}.$$

7. $\operatorname{tg} x = -\sqrt{3}$.



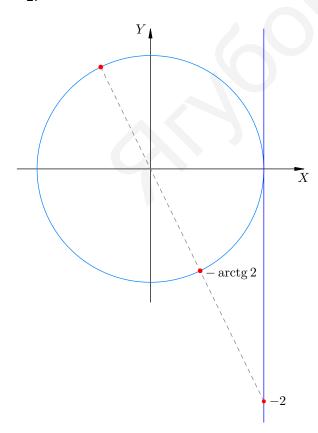
$$x = -\frac{\pi}{3} + \pi n, \, n \in \mathbb{Z}.$$

8. tg x = 2.



 $x = \operatorname{arctg} 2 + \pi n, \, n \in \mathbb{Z}.$

9. tg x = -2.

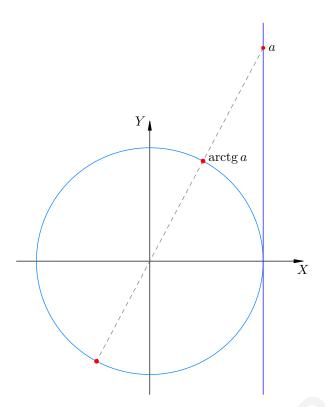


 $x=-\operatorname{arctg}2+\pi n,\,n\in\mathbb{Z}.$

Здесь мы воспользовались нечётностью арктангенса: $\operatorname{arctg}(-2) = -\operatorname{arctg} 2$.

Теперь ясно, что мы имеем в общем случае.

10. tg x = a.



 $x = \operatorname{arctg} a + \pi n, n \in \mathbb{Z}.$

Данная формула обобщает случаи, рассмотренные выше.

Уравнение $\operatorname{ctg} x = a$

Уравнение $\operatorname{ctg} x = a$ можно не рассматривать отдельно, поскольку:

- уравнение $\operatorname{ctg} x = 0$, будучи записано в виде $\cos x/\sin x = 0$, равносильно уравнению $\cos x = 0$ и потому имеет решения $x = \frac{\pi}{2} + \pi n \ (n \in \mathbb{Z});$
- при $a \neq 0$ уравнение $\operatorname{ctg} x = a$ равносильно уравнению $\operatorname{tg} x = \frac{1}{a}$ и потому имеет решения $x = \operatorname{arctg} \frac{1}{a} + \pi n \ (n \in \mathbb{Z}).$