Памятка

Вся геометрия 8 класса в кратком изложении

(к учебнику Л.С. Атанасяна и др.)

Вся геометрия

8 КЛасса в кратком изложении

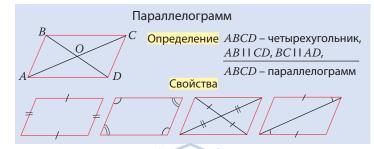
Ilanamka

(к учебнику Л.С. Атанасяна и др.)

СОДЕРЖАНИЕ	Формулы площ
Параллелограмм и его виды1	Правильные тр Углы в круге
Трапеция. Теорема Фалеса. Средняя линия треугольника	Вписанная и оп
Соотношения между сторонами и углами в	Четыре замечат
прямоугольном треугольнике	Условия сущест ной окружност:
Связь между $\sin \alpha$, $\cos \alpha$ и $tg \alpha$	Векторы
Подобные треугольники. Теоремы	Умножение в
о среднем пропорциональном 3	Спожение и

Формулы площадей	3
Правильные треугольники	3
Углы в круге	4
Вписанная и описанная окружности	4
Четыре замечательные точки треугольника	5
Условия существования вписанной и описанной окружности около четырехугольника	
Векторы	6
Умножение вектора на число	7

Параллелограмм и его виды



Признаки параллелограмма

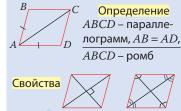
ABCD — параллелограмм, если:

1) AD | | = BC (1-ый признак)

2) AD = BC, AB = DC(2-ой признак)

3) AO = OC; BO = OD(3-ий признак)

Прямоугольник Определение ABCD – параллелограмм, $\angle A = 90^{\circ}$, ABCD – прямоугольник Свойства



Признаки прямоугольника

ABCD – прямоугольник, если:

ABCD – параллелограмм и AC = BD

Признаки ромба

ABCD – ромб, если:

- 1) AB = BC = CD = AD(1-ый признак)
- **2)** ABCD параллелограмм и $AC \perp BD$ (2-ой признак)
- **3)** ABCD параллелограмм и AC – биссектриса $\angle A$ (3-ий признак)

Трапеция. Теорема Фалеса. Средняя линия треугольника

 $AD \mid \mid BC; AB \not\parallel CD$ (по определению)

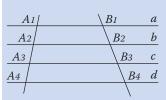
MN – средняя линия

 $MN \mid \mid AD$ MN = 1/2 (AD + BC)

Виды трапеций

прямоугольная

Теорема Фалеса



Если A1A2 = A2A3 = A3A4 и $a \mid\mid b\mid\mid c\mid\mid d$, то B1B2 = B2B3 = B3B4

Средняя линия треугольника

MN – средняя линия \triangle (AM = MB; BN = NC)

Свойства МХ

- 1) MN || AC
- 2) $MN = \frac{1}{2}AC$

Соотношение между сторонами и углами в прямоугольном треугольнике

Теорема Пифагора

$$c^2 = a^2 + b^2$$
, $c = \sqrt{a^2 + b^2}$;
 $a^2 = c^2 - b^2$, $a = \sqrt{c^2 - b^2}$;

$$b^2 = c^2 - a^2$$
, $b = \sqrt{c^2 - a^2}$;

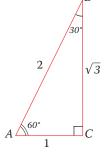
Определение синуса, косинуса и тангенса острого угла и следствия из них

$$\sin \alpha = \frac{a}{c}, a = c \cdot \sin \alpha, c = \frac{a}{\sin \alpha};$$

$$\cos \alpha = \frac{b}{c}$$
, $b = c \cdot \cos \alpha$, $c = \frac{b}{\cos \alpha}$;

$$tg \alpha = \frac{a}{b}$$
, $a = b \cdot tg \alpha$, $b = \frac{a}{tg \alpha}$

Синус, косинус, тангенс углов 30°, 45°, 60°. Связь между $\sin \alpha$, $\cos \alpha$ и $\log \alpha$



Дано:
$$\triangle ABC$$

 $AB = 2$

$$BC = \sqrt{3}$$

AC=1 $\sqrt{3}$ Получаем, что:

$$2^2 = 1^2 + (\sqrt{3})^2$$
 – верно.
Следовательно $\triangle ABC$ – прямоугольный по обратной теореме теоремы Пифагора

$$\sin 30^{\circ} = \frac{AC}{AB} = \frac{1}{2}; \cos 30^{\circ} = \frac{\sqrt{3}}{2};$$

$$\sin 60^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}; \cos 60^{\circ} = \frac{1}{2};$$

$$tg 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}; tg 60^{\circ} = \sqrt{3}$$

Формулы приведения

1)
$$\sin \alpha = \cos (90^{\circ} - \alpha)$$

2)
$$\cos \alpha = \sin (90^{\circ} - \alpha)$$

Связь между $sin \alpha$, $cos \alpha$, $tg \alpha$

1)
$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$

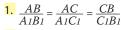
2)
$$sin^2α + cos^2α = 1$$
 основное тригонометрическое тождество

	30°	45°	60°
sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
tg	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

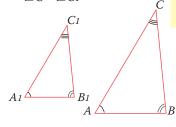
Подобные треугольники

Определение

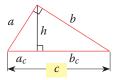
 $\triangle ABC \otimes \triangle A1B1C1$, если выполняются следующие условия:



2. $\angle A = \angle A_1, \angle B = \angle B_1$, $\angle C = \angle C_1$



Теоремы о среднем пропорциональном



$$h^2 = a_c b_c$$
, $h = \sqrt{a_c b_c}$;
 $a^2 = c a_c$, $a = \sqrt{c a_c}$;
 $b^2 = c b_c$, $b = \sqrt{c b_c}$

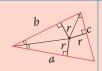
Формулы площадей

 $S = \frac{ah}{a}$

 $S = \frac{1}{2}ab\sin\alpha$

$$S = \sqrt{p(p-a)(p-b)(p-c)},$$

$$z\partial e \ p = \frac{a+b+c}{2}$$



$$S = pr$$

$$S = \frac{abc}{4R}$$

 $S = \frac{1}{2}ab$

 $S = \frac{a^2\sqrt{3}}{4}$

$$S = ab$$

$$S = ah$$

$$S = ab \sin \alpha$$

$$S = \frac{1}{2} d_1 d_2 \sin \alpha$$

$$S = \frac{1}{2}d_1d_2$$

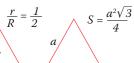
$$S = \frac{a+b}{2} \cdot h$$

$$S = a^2$$

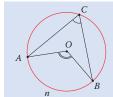
Правильные треугольники

$$R = \frac{1}{2}$$

$$a = R$$



Углы в круге



$$\angle AOB$$
 – центральный;

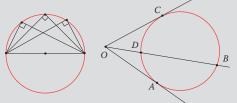
$$\angle AOB = {}^{\cup}AnB.$$

$$\angle ACB$$
 – вписанный;
 $\angle ACB = \frac{1}{2} \lor AnB$.

$$1.\angle AOB = \frac{1}{2}(CD + AB);$$

$$\angle AOB = \frac{1}{2} (\overrightarrow{AB} - \overrightarrow{CD})$$

$$2. AO \cdot OD = CO \cdot OB$$

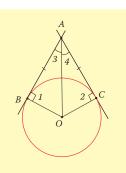


$$\angle BOC = \frac{1}{2} (\overrightarrow{BC} - \overrightarrow{DC})$$
 $OC -$ касательная

$$OC$$
 – касательна OB – секущая $OB \cdot OD = OC^2$

$$S = \pi I$$

$$\pi \approx 3$$



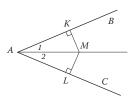
1)
$$AB = AC$$
;

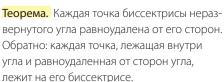
2)
$$\triangle ABO$$
 и $\triangle ACO$ – прямоугольные;

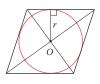
3)
$$\angle 3 = \angle 4$$

 $C = 2\pi R$ — длина окружности; $S = \pi R^2$ – площадь круга; $\pi \approx 3.14159...$ R — радиус

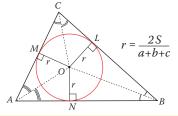
Вписанная и описанная окружности





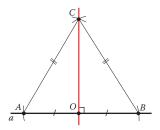


Вписанная окружность. Если все стороны многоугольника касаются окружности, то окружность называется *вписанной* в многоугольник, а *многоугольник – описанным* ОКОЛО этой окружности.

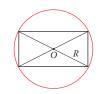


Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

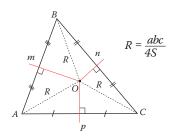
В любой треугольник можно вписать окружность.



Серединный перпендикуляр СО к отрезку AB – это Г.М.Т., равноудаленных от концов отрезка AB.



Описанная окружность. Если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник – вписанным в эту окружность.



Значит: центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.

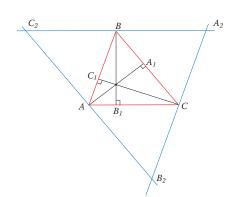
R описанной окружности = AO = OC = OB

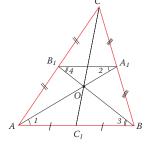
Около любого треугольника можно описать окружность.

Центр описанной окружности около треугольника может быть расположен внутри него, вне его, на середине гипотенузы.

Четыре замечательные точки треугольника

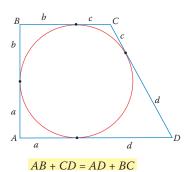
- 1. Биссектрисы треугольника пересекаются в одной точке.
- 2. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
- 3. Высоты треугольника (или их продолжения) пересекаются в одной точке.
- **4.** Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

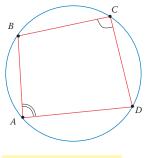




 $AO: OA_1 = 2:1$

Условия существования вписанной и описанной окружностей около четырехугольника

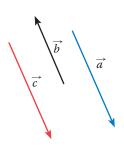




$$\angle A + \angle C = \angle B + \angle D$$

Векторы

- 1. Вектором называется направленный отрезок.
- 2. Вектор характеризуется направлением и длиной.
- 3. Направление множество сонаправленных лучей.
- 4. $|\overrightarrow{a}|$ длина вектора.



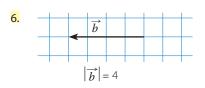
- **1.** Коллинеарные векторы $(\overrightarrow{a} \mid \mid \overrightarrow{b} \mid \mid \overrightarrow{c})$
- **2.** Сонаправленные векторы $\overrightarrow{a} \uparrow \uparrow \overrightarrow{c}$
- 3. Противоположно направленные векторы $\overrightarrow{c} \uparrow \downarrow \overrightarrow{b}$

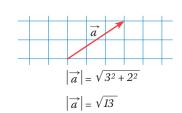
4.
$$\overrightarrow{a} = \overrightarrow{c} \iff \begin{cases} \overrightarrow{a} \uparrow \uparrow \overrightarrow{c} \\ |\overrightarrow{a}| = |\overrightarrow{c}| \end{cases}$$

• $\overline{MM} = \overline{0}$ Имеет любое

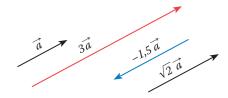
Имеет любое направление

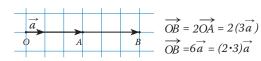
5. От любой точки можно отложить вектор, равный данному, и притом только один.





Умножение вектора на число





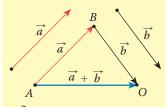
Свойства умножения:

1. (kl) $\overrightarrow{a} = k(l\overrightarrow{a})$ (сочетательный закон)

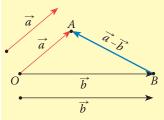
2. $(k + l) \vec{a} = k \vec{a} + l \vec{a}$ (первый распределительный закон)

3. k (\overrightarrow{a} + \overrightarrow{b}) = k \overrightarrow{a} + k \overrightarrow{b} (второй распределительный закон)

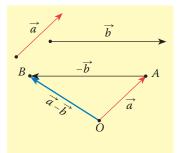
Сложение и вычитание векторов

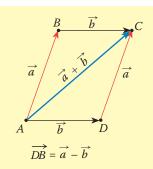


Это правило сложения векторов называется *правилом треугольника*.

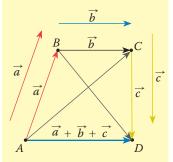


Проверка: \overrightarrow{b} + $(\overrightarrow{a} - \overrightarrow{b}) = \overrightarrow{a}$





Правило параллелограмма



Сумма нескольких векторов

Законы сложения векторов:

$$1. \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$
 (переместительный)

$$2. (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$$
 (сочетательный)

3.
$$\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{a}$$

О методе

За основу данного справочного пособия взят авторский метод Гориной Д.А. Он изложен в форме книжки-раскладушки. Весь учебный материал по геометрии 8-го класса представлен, как на ладони, и его можно охватить единым взглядом. Метод Гориной Д.А. позволяет легко освоить знания по геометрии и прочно укрепить их в памяти. Русунки, графики и цветовое оформление материала облегчают обучение. Эффективность данного метода проверена годами на практике. Пособие предназначено для учащихся, учителей, родителей.

Горина Д.А. – учитель с многолетним педагогическим стажем. Она преподавала математику во всех параллелях (с 5 по 10 классы), в том числе и в классах с углубленным изучением математики. Кроме того, она обладает большим опытом работы с трудными учениками. Учитель высшей категории, отличник народного просвещения, Горина Д.А. имеет награду Института «Открытое общество» – Грант Сороса.

Об авторе

Пособие, которое вы держите в руках, первоначально я разработала специально для своих учеников, которые с трудом осваивали геометрию по обычным учебникам. Я решила представить для них учебный материал как можно доступнее: в сжатой и наглядной форме.

В результате благодаря этому методу моим ученикам было гораздо легче вспомнить пройденный материал и усвоить новый. Геометрия перестала быть для них сложным предметом.

Теперь я хочу поделиться со всеми накопленным опытом и искренне верю, что это пособие поможет любому ученику в освоении геометрии.

Другие книги автора

«Вся геометрия 7 класса в кратком изложении»

«Вся геометрия 9 класса в кратком изложении»

Горина Д.А.

Горина Д.А., Вся геометрия 8 класса в кратком изложении – М.: Евробукс, 2009. – 8 с.

- © Горина Д.А., 2009
- © «Евробукс», 2009