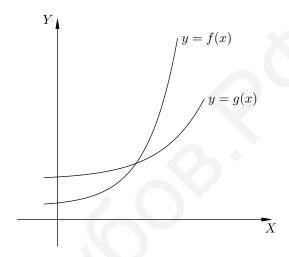
Статья написана в соавторстве с А. Г. Малковой

Геометрический смысл производной

Большинство школьных учебников даёт определение производной через определение предела. А определения предела не даётся вообще. Поэтому школьники в лучшем случае помнят таблицу производных и правила нахождения производной, но смутно представляют, что же именно они ищут.

Цель статьи — доступно объяснить, что такое производная и как её применять. Наше изложение неформально, ни о какой строгости сейчас не может быть и речи. Черёд строгого изложения придёт на первом курсе при изучении математического анализа.

Начнём с простого вопроса. Нарисуем графики двух функций f(x) и g(x).

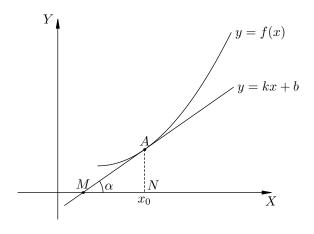


Спрашивается: какая из них быстрее растёт? Ответ очевиден: конечно, f(x). Скорость изменения функции f(x) больше.

Cкорость изменения функции и называется производной этой функции. У функции f(x) производная больше.

Хорошо, но как мы оценивали производную? Мы смотрели, насколько круто идет вверх график функции, то есть насколько быстро меняется y при изменении x. Очевидно, что одна и та же функция в разных точках может меняться быстрее или медленнее — то есть иметь разные значения производной.

Покажем, как найти производную с помощью графика функции.



Возьмём на графике y = f(x) точку A с абсциссой x_0 . Проведём в точке A касательную к графику функции¹. Нам надо оценить, насколько быстро растёт функция, то есть насколько быстро идет вверх её график. Удобная величина для этого — тангенс угла наклона касательной к графику функции.

Производная функции f(x) в точке x_0 равна тангенсу угла наклона касательной к графику y = f(x), проведённой в точке A с абсииссой x_0 :

$$f'(x_0) = \operatorname{tg} \alpha.$$

Поскольку тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему, из прямоугольного треугольника AMN находим:

$$f'(x_0) = \frac{AN}{MN}.$$

Мы смогли найти производную без всяких таблиц, пользуясь только графиком функции!

Есть ещё одно важное соотношение. Вспомним, что в уравнении прямой y = kx + b угловой коэффициент k показывает, насколько круто идёт прямая по отношению к оси X. Численно коэффициент k равен тангенсу угла наклона прямой: $k = \operatorname{tg} \alpha$.

Таким образом, производная функции в точке x_0 равна угловому коэффициенту касательной к графику этой функции, проведённой в точке A с абсииссой x_0 :

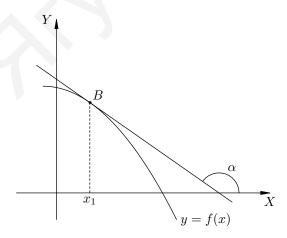
$$f'(x_0) = k.$$

Обратим внимание, что угол α мы измеряем между касательной к графику и *положительным направлением* оси X. При этом $\alpha \in [0, \pi)$.

Если функция возрастает (как, например, вблизи точки A), то касательная образует острый угол α с положительным направлением оси X. Тангенс острого угла положителен. Следовательно, если функция возрастает, то её производная положительна.

Так, в нашем примере будет $f'(x_0) > 0$.

А если функция убывает?



Касательная к графику, проведённая в точке B с абсциссой x_1 , образует mynoй угол α с положительным направлением оси X. Тангенс тупого угла отрицателен. Значит, ecnu функция убывает, $e\ddot{e}$ производная отрицательна: $f'(x_1) < 0$.

Верны и обратные утверждения:

• если производная функции положительна на некотором промежутке, то функция возрастает на данном промежутке;

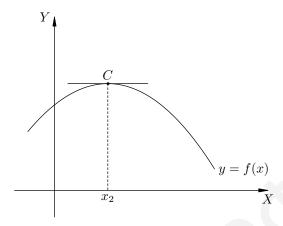
 $^{^{1}}$ Мы предполагаем, что касательную провести *можно*. Такое, однако, бывает не всегда — см. далее.

• если производная функции отрицательна на некотором промежутке, то функция убывает на данном промежутке.

Особый интерес представляют точки, в которых производная обращается в нуль. Они называются стационарными точками функции.

Стационарные точки могут быть трёх видов.

1. Точка максимума.

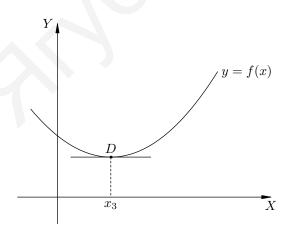


Касательная в точке C горизонтальна, т. е. образует нулевой угол с осью X. Поэтому $f'(x_2) = 0$.

При переходе через точку x_2 возрастание функции сменяется убыванием. Иными словами, производная меняет знак с (+) на (-).

Точка x_2 является mочкой максимума: значение функции в точке x_2 больше, чем во всех достаточно близких к ней точках.

2. Точка минимума.



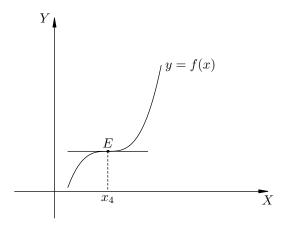
Касательная в точке D также горизонтальна. Поэтому $f'(x_3) = 0$.

При переходе через точку x_3 убывание функции сменяется возрастанием, т. е. производная меняет знак с (-) на (+).

Точка x_3 является *точкой минимума*: значение функции в точке x_3 меньше, чем во всех достаточно близких к ней точках.

Точки максимума и минимума функции называются точками экстремума.

3. Седловая точка.



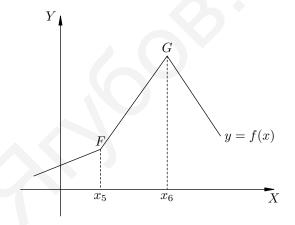
Касательная в точке E горизонтальна, $f'(x_4) = 0$.

При переходе через точку x_4 смены тенденции не происходит: функция как возрастала, так и продолжает возрастать. Производная не меняет своего знака.

Стационарная точка, не являющаяся точкой экстремума, называется ced no so i moч ko i. Точка x_4 — седловая точка.

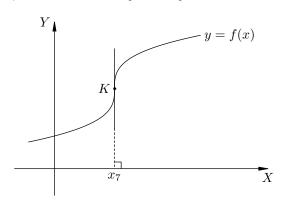
Возможны ситуации, когда производная в данной точке не существует.

Такое может случиться, например, когда на графике функции имеется излом. В точке излома касательную провести нельзя.



На данном графике в точках F и G касательная не существует. Следовательно, не существует и производная в точках x_5 и x_6 .

Но производная может не существовать даже в том случае, когда существует касательная! Вспомните, ведь производная — это тангенс угла наклона касательной. И если касательная образует с осью X угол 90° , то тангенс не существует.



В случае, изображённом на рисунке, производная в точке x_7 не существует.

Стационарные точки (типа x_2 , x_3 , x_4), а также точки типа x_5 , x_6 , x_7 называются *критическими типа точками*.

Kритическая точка функции — это внутренняя точка области определения, в которой производная равна нулю или не существует.

Случаи, когда производная не существует, могут встретиться в части С заданий ЕГЭ. Но в части В задачи стандартные: во всех нужных точках производная существует. Тогда связь поведения функции со значениями её производной иллюстрируется следующей таблицей.

f(x)	возрастает	точка максимума	убывает	точка минимума	возрастает
f'(x)	+	0	_	0	+