СПРАВОЧНЫЕ МАТЕРИАЛЫ ОГЭ ПО МАТЕМАТИКЕ

АЛГЕБРА

• Формула корней квадратного уравнения:

$$x = \frac{-b \pm \sqrt{D}}{2a}$$
, где $D = b^2 - 4ac$.

• Если квадратный трехчлен $ax^2 + bx + c$ имеет два корня x_1 и x_2 , то

$$ax^{2} + bx + c = a(x-x_{1})(x-x_{2});$$

если квадратный трехчлен $ax^2 + bx + c$ имеет единственный корень x_0 , то

$$ax^{2} + bx + c = a(x - x_{0})^{2}$$
.

• Абсцисса вершины параболы, заданной уравнением $y = ax^2 + bx + c$:

$$x_0 = -\frac{b}{2a}.$$

• Формула n-го члена арифметической прогрессии (a_n) , первый член которой равен a_1 и разность равна d:

$$a_n = a_1 + d(n-1).$$

• Формула суммы первых *п* членов арифметической прогрессии:

$$S_n = \frac{\left(a_1 + a_n\right)n}{2}.$$

• Формула n-го члена геометрической прогрессии b_n , первый член которой равен b_1 , а знаменатель равен q:

$$b_n = b_1 \cdot q^{n-1}$$

• Формула суммы первых *п* членов геометрической прогрессии:

$$S_n = \frac{\left(q^n - 1\right)b_1}{q - 1}.$$

• Формула сокращённого умножения:

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
$$a^{2} - b^{2} = (a+b)(a-b)$$

• Свойства арифметического квадратного корня:

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b} \text{ при } a \ge 0, b \ge 0;$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \text{ при } a \ge 0, b > 0.$$

• Свойства степени при a > 0, b > 0

$$a^{-n} = \frac{1}{a^n};$$

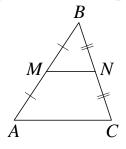
$$a^n \cdot a^m = a^{n+m};$$

$$\frac{a^n}{a^m} = a^{n-m};$$

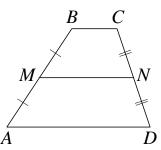
$$(a^n)^m = a^{nm};$$

$$(ab)^n = a^n \cdot b^n;$$

$$(\frac{a}{b})^n = \frac{a^n}{b^n}.$$

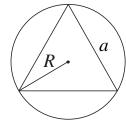

Таблица квадратов двузначных чисел

		Единицы									
		0	1	2	3	4	5	6	7	8	9
Десятки	1	100	121	144	169	196	225	256	289	324	361
	2	400	441	484	529	576	625	676	729	784	841
	3	900	961	1024	1089	1156	1225	1296	1369	1444	1521
	4	1600	1681	1764	1849	1936	2025	2116	2209	2304	2401
	5	2500	2601	2704	2809	2916	3025	3136	3249	3364	3481
	6	3600	3721	3844	3969	4096	4225	4356	4489	4624	4761
	7	4900	5041	5184	5329	5476	5625	5776	5929	6084	6241
	8	6400	6561	6724	6889	7056	7225	7396	7569	7744	7921
	9	8100	8281	8464	8649	8836	9025	9216	9409	9604	9801

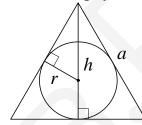

ГЕОМЕТРИЯ

Сумма углов выпуклого n-угольника равна $180^{\circ}(n-2)$.

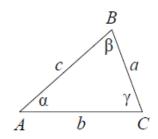
Средняя линия треугольника и трапеции



$$MN$$
 — ср. лин. $MN \parallel AC$ $MN = \frac{AC}{2}$

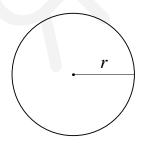


$$BC \parallel AD$$
 MN — ср. лин.
 $MN \parallel AD$
 $MN = \frac{BC + AD}{2}$


Описанная и вписанная окружности правильного треугольника

$$R = \frac{a\sqrt{3}}{3}$$
$$S = \frac{a^2\sqrt{3}}{4}$$

$$r = \frac{a\sqrt{3}}{6}$$
$$h = \frac{a\sqrt{3}}{2}$$

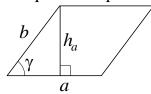

Для треугольника ABC со сторонами AB=c, AC=b, BC=a:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R,$$

где R — радиус описанной окружности.

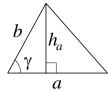
Для треугольника ABC со сторонами AB=c, AC=b, BC=a:

$$c^2 = a^2 + b^2 - 2ab\cos C$$
.

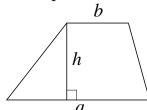


Длина окружности $C = 2\pi r$

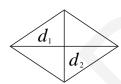
Площадь круга $S = \pi r^2$


Площади фигур

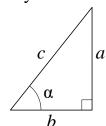
Параллелограмм


$$S = ah_a$$
$$S = ab\sin\gamma$$

Треугольник


$$S = \frac{1}{2}ah_a$$
$$S = \frac{1}{2}ab\sin\gamma$$

Трапеция


$$S = \frac{a+b}{2} \cdot h$$

Ромб

$$d_1,\ d_2$$
 — диагонали $S = \frac{1}{2} d_1 d_2$

Прямоугольный треугольник

$$\sin \alpha = \frac{a}{c}$$
$$\cos \alpha = \frac{b}{c}$$

$$tg\alpha = \frac{a}{b}$$

Теорема Пифагора: $a^2 + b^2 = c^2$

Основное тригонометрическое тождество: $\sin^2 \alpha + \cos^2 \alpha = 1$

Некоторые значения тригонометрических функций

Transfer and remain than an artist the formation of the contract of the contra										
α	градусы	0°	30°	45°	60°	90°	180°	270°	360°	
sinα		0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0	
cosα		1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1	
tgα		0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		0		0	