Югорский физико-математический лицей

В.П. Чуваков

Квадратичная функция

Учебно-методическое пособие

Ханты-Мансийск 2014

В.П. Чуваков

Квадратичная функция: Учебно-методическое пособие, 4-е изд.- Ханты-Мансийск, Бюджетное общеобразовательное учреждение Ханты-Мансийского автономного округа-Югры «Югорский физико-математический лицей-интернат», 34 с.

Пособие предназначено для повторения и систематизации знаний по квадратичным функциям с целью углубленного изучения математики, подготовки к предметным и вузовским олимпиадам, ЕГЭ.

Адресовано школьникам старших классов и преподавателям.

Текст одного из изданий пособия размещен на сайте лицея: http://ugrafmsh.ru/version/ufmsh/content/page_4780.html

Введение

Квадратичная функция является одной из наиболее изученных функций школьного курса алгебры, для которой доказаны многие свойства, и задачи на которую в явном или неявном виде часто встречаются на математических олимпиадах и ЕГЭ. Это задачи с параметрами на общие свойства параболы, на существование решений и число решений, теорему Виета, расположение корней квадратного уравнения, геометрию параболы.

Для решения этих задач требуется как знание фактического материала, так и общее понимание алгебраических свойств квадратичной функции и геометрии ее графика. В ряде случаев геометрическая интерпретация может подсказать алгоритм решения или проверить логическую правильность рассуждений.

В пособии систематизированы основные знания по квадратичной функции, приведены доказательства и геометрическая интерпретация основных свойств, показаны их применения для решения задач различного уровня сложности.

Приведен список задач для самостоятельного решения, список олимпиадных задач и задач повышенного уровня сложности.

1. Общие сведения

Рассмотрим функцию $y = ax^2$.

График этой функции (рис. 1) называется параболой.

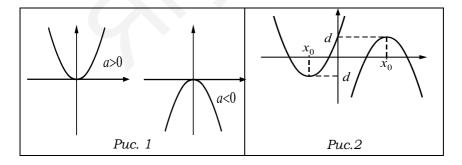


График функции $y = a(x-x_0)^2 + d$ тоже является параболой с вершиной в точке (x_0,d) и получается из графика $y = ax^2$ смещением вершины параболы на величину x_0 по оси OX и на величину d по оси OY (рис.2)

Определение. Квадратным трехчленом называется выражение вида $f(x) = ax^2 + bx + c$.

Выражение $x^2 + px + q$ называется приведенным квадратным трехчленом.

Выделим «полный квадрат» из квадратного трехчлена $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}.$ (1)

Например, $f(x) = 2x^2 + 12x - 4 = 2(x+3)^2 - 22$ – парабола с ветвями, направленными вверх, и координатами вершины (-3, -22), а $f(x) = 3 + 2x - x^2 = -(x-1)^2 + 4$ – парабола с ветвями, направленными вниз, координатами вершины (1; 4) и осью симметрии x=1.

Свойства функции, вытекающие из формулы (1):

- 1. График квадратного трехчлена парабола с вершиной в точке $(x_b\,;y_b)\!=\!\!\left(\!-\frac{b}{2a};-\frac{b^2-4ac}{4a}\right)\!.$
- 2. График функции пересекается с осью OY в точке $y_0 = f(0) = c$.
- 2. Если a>0, то функция $f(x)=ax^2+bx+c$ монотонно убывает на интервале $(-\infty;-\frac{b}{2a}]$ и монотонно возрастает на интервале $[-\frac{b}{2a};\infty)$.

- 3. Если a<0, то функция $f(x)=ax^2+bx+c$ монотонно возрастает на интервале $(-\infty;-\frac{b}{2a}]$ и монотонно убывает на интервале $[-\frac{b}{2a};\infty)$.
- 4. Если a > 0, то $ax^2 + bx + c \ge \frac{4ac b^2}{4a}$ для любого $x \in R$.
- 5. Если a<0 , то $ax^2+bx+c\leq \frac{4ac-b^2}{4a}$ для любого $x\in R$.
- 6. Парабола $f(x) = ax^2 + bx + c$ симметрична относительно оси $x = \frac{-b}{2a}$.
- 7. Если существует точка p такая, что $a \cdot f(p) < 0$, то D > 0.

Пример 1.1 По виду графиков функции $f(x)=ax^2+bx+c$, представленных на рисунках 3 и 4, определите знаки коэффициентов a,b,c.

Решение. У параболы на рисунке 3 ветви направлены вверх, поэтому a>0. Координата вершины $x_e=\frac{-b}{2a}>0$, следовательно b<0. Наконец, из графика видно, что значение функции в нуле f(0)=c>0. Таким образом, a>0, b<0, c>0.

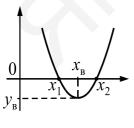
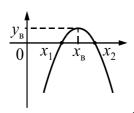


рис. 3



puc.4

Аналогично, из вида график на рис. 4, получаем условия $a<0,\ b>0,\ c<0$ (ветви параболы направлены вниз, $x_{_{\! g}}=\frac{-b}{2a}>0,$ и f(0)=c<0).

1. Решение квадратных уравнений $ax^2 + bx + c = 0$

Определение Выражение $D = b^2 - 4ac$ называется дискриминантом квадратного уравнения.

Из формулы (1) следует, что если x — корень квадратного уравнения, то

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}.$$
 (2)

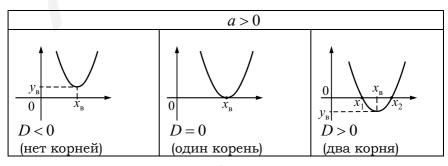
ТЕОРЕМА 1 (О существовании корней квадратного уравнения) Если D < 0, то уравнение $ax^2 + bx + c = 0$ не имеет корней.

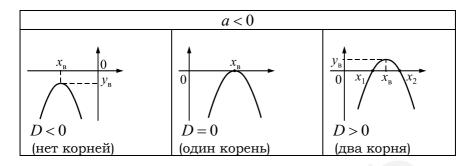
Если D=0, то уравнение $ax^2+bx+c=0$ имеет единственный корень $x=\frac{-b}{2a}$.

Если D>0 , то уравнение $ax^2+bx+c=0$ имеет два различных корня $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$.

Следствие.
$$x_2 - x_1 = \frac{\sqrt{D}}{a}$$
.

Геометрическая интерпретация теоремы





Пример 1.2 При каких значениях параметра b функция $f(x) = \frac{1}{x^2 + 4x - 3b + 1}$ определена при всех значениях x?

Решение. Функция f(x) будет определена при всех значениях x, если $x^2+4x-3b+1\neq 0$ при всех x. Уравнение $x^2+4x-3b+1=0$ не имеет корней, если $D=16-4\left(1-3b\right)<0$. Решая последнее неравенство, получаем условие b<-1. Ответ: b<-1.

Пример 1.3 При каких значениях параметра a уравнение $(a+4)x^2+6x-1=0$ имеет единственное решение?

Решение. Уравнение имеет единственное решение, если D = 36 + 4(a+4) = 52 + 4a = 0. Ответ: a = -13.

Пример 1.4 Укажите область определения и область значений функции $f(x) = \sqrt{3 + 2x - x^2}$.

Решение. Пусть $g(x) = 3 + 2x - x^2$. Графиком функции g(x) является парабола с ветвями, направленными вниз, и координатами вершины $(x_b, y_b) = (1, 4)$, кроме того, для любого x справедливо неравенство $g(x) \le g(1) = 4$. Область определения функции f(x) определяется условием $g(x) \ge 0$, которое справедливо при $-1 \le x \le 3$. Графиком функции $y = \sqrt{3 + 2x - x^2}$ является полу-

окружность $y^2 = 3 + 2x - x^2 = -(x-1)^2 + 4$. Область значений функции $f(x) = \sqrt{g(x)}$ определяется условием $0 \le f(x) \le \sqrt{4} = 2$. Область определения – [-1;3], область значений – [0;2].

Пример 1.5 Докажите, что для любых $a,b,c \neq 0$ хотя бы одно из уравнений $ax^2 + 2bx + c = 0$, $bx^2 + 2cx + a = 0$, $cx^2 + 2ax + b = 0$ имеет решение.

Доказательство «от противного». Пусть ни одно из уравнений не имеет решений. Тогда дискриминанты всех уравнений отрицательны: $4b^2-4ac<0,\,4c^2-4ab<0,\,4a^2-4bc<0.$ Отсюда, $b^2<ac,\,c^2<ab,\,a^2<bc.$ Перемножим эти неравенства и получим, что $b^2a^2\,c^2<abcabc.$ Противоречие.

Пример 1.6 Докажите, что квадратный трехчлен $f(x)=ax^2+bx+c$ принимает целые значения при любом целом x тогда и только тогда, когда 2a, a+b, c – целые числа.

Доказательство. Если для любого целого x, f(x) – целое число, то f(0)=c, f(1)=a+b+c, f(-1)=a-b+c – целые числа. Отсюда следует, что a+b, 2a+c – целые.

Обратно, пусть 2a, a+b, c- целые числа. Тогда, $f(x)=ax^2+bx+c=\frac{2a\,x(x-1)}{2}+(a+b)\,x+c$. Если x- целое, то $\frac{x(x-1)}{2}$ – целое, а f(x) – сумма трех целых чисел.

Пример 1.7 Рассмотрим все функции $y = x^2 + px + q$, у которых p + q = 2010. Докажите, что графики всех этих функций проходят через одну точку.

Доказательство. Схема доказательства: возьмем две конкретные функции, найдем точку их пересечения и проверим, будет ли эта точка принадлежать остальным графикам. Найдем точку пересечения двух парабол, удовлетворяющих данному условию: например $y = x^2 + 0 \cdot x + 2010$ и $y = x^2 + x + 2009$. Это точка

(1; 1+p+q)=(1;2011). Легко проверить, что эта точка принадлежит графикам всех остальных функций этого семейства, так как по условию задачи для любой функции f(1)=1+p+q=2011.

Пример 1.8 (Региональный этап олимпиады по математике 2010) Известно, что $ax^2 + bx + c > cx$ для любого x. Докажите, что $cx^2 - bx + a > cx - b$ для любого x.

Доказательство. Из условия задачи следует, что для любого x $f(x) = ax^2 + (b-c)x + c > 0$. Следовательно, a > 0, f(0) = c > 0, $D = (b-c)^2 - 4ac < 0$. Если $g(x) = cx^2 - (b+c)x + a + b$, то условие задачи ($\forall x : g(x) > 0$) будет выполнено если: c > 0, $D_1 = (b+c)^2 - 4c(a+b) < 0$. В силу предыдущего c > 0, а $D_1 = b^2 + c^2 + 2bc - 4ca - 4cb = (b-c)^2 - 4ac = D < 0$.

Пример 1.9 Докажите, что уравнение $ax^2 + bx + c = 0$ имеет два различных корня, если a(4a+2b+c) < 0. Верно ли обратное?

Доказательство. Заметим, что 4a+2b+c=f(2). Пусть a<0. Из условия задачи следует, что f(2)>0, т.е. значение функции в точке x=2 больше нуля. Из Следствия 1 Теоремы 4 следует, что корни уравнения x_1 , x_2 существуют и различны $(x_1<2< x_2)$. Для случая a>0 доказательство аналогичное.

Обратное неверно, так как число 2 может не лежать между корнями параболы.

2. Теорема Виета

Связь между корнями квадратного уравнения и его коэффициентами устанавливает следующая

ТЕОРЕМА Виета

Если x_1 , x_2 – корни квадратного уравнения $ax^2 + bx + c = 0$, то справедливы условия:

$$x_1 + x_2 = -\frac{b}{c}$$

$$x_1 \cdot x_2 = \frac{c}{a}$$

Следствие 1. Используя теорему Виета, можно вычислять некоторые симметрические выражения от корней уравнения, не находя самих корней:

$$\frac{1}{x_1} + \frac{1}{x_2}$$
, $x_1^2 + x_2^2$, $\frac{1}{x_1^3} + \frac{1}{x_2^3}$, $\frac{1}{x_1^2} + \frac{1}{x_2^2}$, $x_1^3 + x_2^3$.

Например:

$$\frac{1}{x_1} + \frac{1}{x_2} = \frac{x_1 + x_2}{x_1 x_2} = \frac{-b}{c}; \quad x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1 x_2 = \frac{b^2}{a^2} - \frac{2c}{a};$$

$$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1 x_2 = \frac{b^2}{a^2} - \frac{4c}{a};$$

$$x_1^3 + x_2^3 = (x_1 + x_2)(x_1^2 - x_1 x_2 + x_2^2) = (x_1 + x_2)((x_1 + x_2)^2 - 3x_1 x_2).$$

ТЕОРЕМА 3. (Обратная теорема Виета).

Если числа x_1 , x_2 удовлетворяют соотношениям $x_1+x_2=-p$, $x_1\cdot x_2=q$, то x_1 , x_2 являются корнями приведенного уравнения $x^2+px+q=0$.

теорема 4. (О разложении на линейные множители).

Если x_1 , x_2 – корни квадратного уравнения $ax^2 + bx + c = 0$, то $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Следствие 1. (Решение неравенств)

Пусть D > 0 и $x_1 \neq x_2$ – корни уравнения. Тогда справедливы утверждения:

- А) При a > 0
 - 1. $ax^2 + bx + c \ge 0 \Leftrightarrow$ когда $x \le x_1$, либо $x \ge x_2$.
 - 2. $ax^2 + bx + c < 0 \iff$ когда $x_1 < x < x_2$.
- В) При a < 0
 - 3. $ax^2 + bx + c \ge 0$ когда $x_1 \le x \le x_2$.

4. $ax^2 + bx + c < 0 \Leftrightarrow$ когда $x < x_1$ либо $x \ge x_2$.

Графически решения квадратичных неравенств можно представить следующим образом

	$ax^2 + bx + c > 0$		$ax^2 + bx + c < 0$	
	D > 0	D < 0	D > 0	D < 0
<i>a</i> > 0			x_1 x_2	
	$x < x_1 \\ x > x_2$	$x \in R$	$x_1 < x < x_2$	нет реше- ний
a < 0	$x_1 < x < x_2$	нет решений	$x < x_1 $ $x > x_2$	$x \in R$

Следующая теорема поможет исследовать знаки корней квадратного уравнения, не вычисляя значений корней.

ТЕОРЕМА 6. Для того чтобы корни квадратного уравнения $ax^2 + bx + c = 0$ x_1, x_2 имели одинаковые знаки необходимо и достаточно выполнение условий: D > 0, $x_1 x_2 = \frac{c}{a} > 0$. Более того,

если
$$\frac{-b}{a} = x_1 + x_2 > 0$$
, то оба корня положительны,

если
$$\frac{-b}{a} = x_1 + x_2 < 0$$
, то оба корня отрицательны.

Рассмотрим несколько примеров, иллюстрирующих возможности применения теорем $3-6\,$ для решения задач.

Пример 2.1 Найдите сумму корней всех квадратных уравнений вида $x^2 + px - 2010 = 0$, где p принимает все целые значения от -100 до 100.

Решение. Заметим, что это уравнение при любом значении имеет два вещественных корня $(D=p^2+4\cdot 2010>0)$. По теореме Виета сумма двух корней каждого уравнения равна p, а сумма корней всех уравнений равна сумме всех целых чисел от -100 до 100. Ответ: 0.

Пример 2.2 При каких значениях d оба корня уравнения $2x^2 + 3x + d = 0$ отрицательны?

Решение. По условию задачи сумма корней меньше нуля, а произведение – больше нуля: $D=9-8d>0, \ \frac{c}{a}=\frac{d}{2}>0,$ -h -3

$$\frac{-b}{a} = \frac{-3}{2} < 0$$
. *Omsem:* $0 < d < \frac{9}{8}$.

Пример 2.3 Известно, что $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{2}$, где x_1 , x_2 – корни уравнения $x^2 + x + b = 0$. Найдите b.

Решение. $\frac{x_1+x_2}{x_1\cdot x_2}=\frac{1}{2}$ \Rightarrow $2(x_1+x_2)=x_1\cdot x_2$. По теореме Виета $x_1+x_2=-1,\ x_1\cdot x_2=b.$ Ответ: b=-2.

Пример 2.4 Известно, что $x_1 = 5x_2$, где x_1 , x_2 – корни уравнения $x^2 - (a+1)x + a = 0$. Найдите a.

Решение. По теореме Виета $x_1+x_2=5x_2+x_2=6x_2=a+1$, $x_1\cdot x_2=5x_2^2=a$. Отсюда $x_2=\frac{a+1}{6}$, $\frac{5\cdot (a+1)^2}{36}=a$, $5(a+1)^2=36a$. Квадратное уравнение $5a^2-26a+5=0$ имеет два корня $a_1=\frac{1}{5}$, $a_2=5$. Ответ: $a=\frac{1}{5}$, a=5.

Пример 2.5 Все коэффициенты квадратного трехчлена – целые нечетные числа. Может ли он иметь два целых корня?

Доказательство «от противного». Пусть уравнение $ax^2+bx+c=0$ имеет два целых корня x_1 , x_2 . Тогда, по теореме Виета, $-\frac{b}{a}=x_1+x_2$ и $\frac{c}{a}=x_1\cdot x_2$ – целые числа. Если a,b,c – целые нечетные числа, то оба числа $\frac{b}{a}$, $\frac{c}{a}$ – целые нечетные, однако одно из чисел $x_1\cdot x_2$, x_1+x_2 всегда будет четным. Противоречие. *Ответ*: не может.

Пример 2.6 Пусть x_1 , x_2 — корни уравнения $ax^2 + bx + c = 0$. Если a+b+c=0, то $x_1=1$, $x_2=\frac{c}{a}$. Если a-b+c=0, то $x_1=-1$, $x_2=\frac{c}{a}$.

Доказательство. Заметим, что f(1)=a+b+c, f(-1)=a-b+c и по теореме Виета $x_2\cdot 1=\frac{c}{a}$ или $x_2\cdot (-1)=\frac{c}{a}$. Утверждение доказано.

Пример 2.7 Известно, что график квадратичной функции $f(x) = ax^2 + bx + c$ проходит через точки A(4;0), B(6;0), C(5;-2). Найдите a, b, c.

Первое решение. Подставим координаты точек A, B, C в уравнение функции и получим три уравнения

14a + 4b + c = 0, 36a + 3b + c = 0, 25a + 5b + c = -1, решив которые можно найти коэффициенты a, b, c.

Второе решение. Из условия задачи следует, что точки x=4, x=6 являются корнями уравнения $ax^2+bx+c=0$. Поэтому, f(x) можно разложить на линейные множители $f(x)=ax^2+bx+c=a(x-4)(x-6)$. Так, как f(5)=-2, то a=2. Наконец $ax^2+bx+c=2(x-4)(x-6)=2x^2-20x+48$. Ответ: a=2, b=-20, c=48.

Пример 2.8 При каких значениях параметра b среди решений неравенства $x^2 + 2x + b < 0$ содержится только три целых числа?

Решение. Вершина параболы имеет координаты (-1;b-1), поэтому одна точка с целыми координатами x=-1 точно находится среди решений исходного неравенства. Ближайшие к точке x=-1 целые числа – это точки x=0, x=-2, симметричные относительно вершины и либо одновременно лежат между корнями, либо одновременно не лежат. По условию задачи всего три целых лежат между корнями, поэтому это могут быть только числа -2,-1,0, а числа x=-3, x=1 уже не удовлетворяет исходному неравенству. Таким образом, условие задачи будет выполнено, если будут выполнены условия: $f(0)<0, f(1)\geq 0$. Отсюда b<0, 3+b>0. Ответ: $-3\leq b<0$.

Пример 2.9 Пусть P(x) и Q(x) – приведенные квадратные трехчлены, имеющие по два корня. Оказалось, что сумма двух чисел, полученных при подстановке корней трехчлена P(x) в трехчлен Q(x) равна сумме двух чисел, полученных при подстановке двух корней Q(x) в трехчлен P(x). Докажите, что дискриминанты квадратных трехчленов P(x) и Q(x) равны.

Доказательство. Пусть $P(x)=x^2+ax+p$, $Q(x)=x^2+bx+q$, e,f — корни P(x), m,n — корни Q(x). Из условия задачи $m^2+am+p+n^2+an+p=e^2+be+q+f^2+bf+q \Rightarrow m^2+n^2+a(m+n)+2=e^2+f^2+b(e+f)+2q=(m+n)^2-2mn+a(m+n)+2p=(e+f)^2-2ef+b(e+f)+2q$. По теореме Виета e+f=-a,ef=p,m+n=-b,mn=q. Подставим эти значения в предыдущее выражение и получим $b^2-2q-ab+2p=a^2-2p-ba+2q\Rightarrow b^2-4q=a^2-4p$. Т.е. $D_1=D_2$.

3. Расположение корней квадратного уравнения

Пусть x_1 , x_2 – корни квадратного уравнения $ax^2 + bx + c = 0$, p – некоторое действительное число.

Сформулируем следующие вопросы:

- 1) При каких условиях на коэффициенты a, b, c оба корня уравнения различны и больше числа p (рис. 5);
- 2) При каких условиях на коэффициенты a, b, c оба корня уравнения различны и меньше числа p (рис. 6);
- 3) При каких условиях на коэффициенты a, b, c один корень уравнения больше числа p, а другой меньше числа p (рис. 7).

Ответы на эти вопросы дают теоремы "о расположении корней квадратного уравнения".

Ответ на первый вопрос дает следующая теорема.

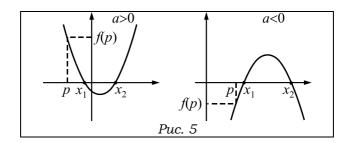
ТЕОРЕМА 7. Для того чтобы корни квадратного уравнения $ax^2 + bx + c = 0$ были различны и оба больше заданного числа p (рис. 5), необходимо и достаточно выполнение следующих условий:

$$egin{cases} a>0\ D>0\ x_b=rac{-b}{2a}>p\ f(p)>0 \end{cases}$$
 where $egin{cases} a<0\ D>0\ x_b=rac{-b}{2a}>p\ f(p)<0 \end{cases}$

Достамочность. Пусть эти условия выполнены. Так как D > 0, то уравнение имеет различные корни – x_1 , x_2 ($x_1 < x_2$).

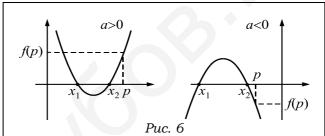
Если a>0 и f(p)>0, то $p< x_1$ либо $p>x_2$, а из условия $x_b< p$ следует, что $p< x_1$.

 $x_b < p$ следует, что $p < x_1$. Если a < 0 и f(p) < 0, то $p < x_1$ либо $p > x_2$, а из условия $x_b > p$ следует, что $p < x_1$. Т.е. оба корня различны и больше числа p.



Необходимость. Так как оба корня различны, то D>0. Если $x_1>p$, $x_2>p$, то $x_B=\frac{x_1+x_2}{2}>p$. Наконец если a>0, то f(p)>0, а если a<0, то f(p)<0.

Ответ на второй вопрос дает Теорема 8, которая доказывается аналогично.



ТЕОРЕМА 8. Для того чтобы корни квадратного уравнения $ax^2 + bx + c = 0$ были различны и оба меньше числа p (рис. 6), необходимо и достаточно выполнение следующих условий:

$$\begin{cases} a>0\\ D>0 \end{cases}$$

$$\begin{cases} a<0\\ D>0 \end{cases}$$

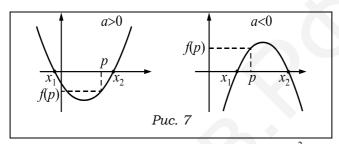
$$\begin{cases} x_b=\frac{-b}{2a} или
$$\begin{cases} x_b=\frac{-b}{2a}
$$f(p)>0$$$$$$

Ответ на третий вопрос дает

ТЕОРЕМА 9. Для того чтобы корни квадратного уравнения $ax^2 + bx + c = 0$ были расположены по разные стороны от числа p (рис. 7), необходимо и достаточно выполнение следующих условий:

$$\begin{cases} a > 0 \\ f(p) < 0 \end{cases} \quad \text{или} \quad \begin{cases} a < 0 \\ f(p) > 0 \end{cases}$$

Необходимость. Если x_1 , x_2 – корни уравнения, причем $x_1 , то из свойств параболы следует, что <math>a \cdot f(p) < 0$.



Достаточность. Пусть
$$a < 0$$
, $f(p) = a \left(p + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a} < 0$.

Тогда
$$\frac{D}{4a} = \frac{b^2 - 4ac}{4a} > a \left(p + \frac{b}{2a} \right)^2$$
, т.е. $D > 0$, а из условия $f(p) < 0$ следует, что $x_1 .$

Теорема доказана.

Алгоритмическая простота и наглядность геометрического представления теорем о расположении корней квадратного уравнения делает их применение эффективным способом решения задач с параметрами.

Пример 3.1 При каких значениях параметра a число 2 находится между корнями уравнения $x^2 + (4a+5)x + 3 - 2a = 0$?

Решение. Так как ветви параболы направлены верх, то условие задачи будет выполнено, если

$$f(2)=4+2\cdot(4a+5)+3-2a=6a+17<0$$
. Omsem: $a<-\frac{17}{6}$.

Пример 3.2 При каких значениях параметра b оба корня уравнения $x^2 - 6bx + (2 - 2b + 9b^2) = 0$ больше 3?

Решение. Из теоремы 6 получаем условия

$$\begin{cases} D = 8b - 8 > 0 \\ x_b = \frac{6b}{2} > 3 \\ f(3) = 9b^2 - 20b + 11 > 0 \end{cases} \Rightarrow \begin{cases} b > 1 \\ b > \frac{11}{9} \end{cases} \Rightarrow b > \frac{11}{9}.$$

Пример 3.3 При каких значениях параметра p уравнение $px^2 - 4x + 1 = 0$ имеет только одно положительное решение?

Решение. Возможны три случая, в которых исходное уравнение может иметь только одно положительное решение:

- 1) p=0 квадратное уравнение превращается в линейное и оно имеет одно положительное решение.
- 2) D=0- квадратное уравнение имеет один положительный корень.
- 3) D>0 квадратное уравнение имеет два корня, однако положительный корень только один.

Рассмотрим все случаи:

1)
$$p=0$$
, $x_0 = \frac{1}{4} > 0$. 2) $D=16-4p=0$, $p=4$, $x_0 = \frac{1}{2} > 0$.

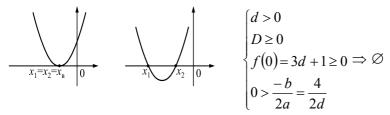
3)
$$D=16-4p>0$$
, $p\cdot f(0)<0$; $f(0)=1$, поэтому $p\cdot f(0)<0$ при $p<0$. Ответ: $p\leq 0$, $p=4$.

Пример 3.4 При каких значениях параметра d неравенство $dx^2 - 4x + 3d + 1 > 0$ выполняется при всех значениях x > 0?

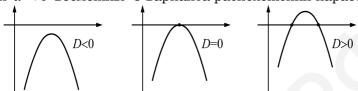
Решение.
$$D=16-4d(3d+1)=16-12d^2-4d=-4(3d+4)(d-1)$$

Если d>0, D<0, то неравенство f(x)>0 выполняется при всех x, в том числе, и при x>0. Следовательно, при d>1 условие задачи выполнено.

Если d>0 $D\geq 0$ то возможны два варианта расположения параболы.



Если d < 0 возможны 3 варианта расположения параболы.



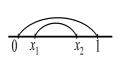
Во всех трех случаях парабола либо не больше нуля для любого x, либо больше нуля только на ограниченном отрезке $(x_1,\ x_2)$. Следовательно, условие задачи не может быть выполнено при всех d<0. Ответ: d>1.

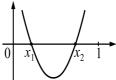
Пример 3.5 При каких значениях a все решения неравенства $ax^2 - x + 1 - a < 0$ удовлетворяют условию 0 < x < 1?

Решение.

Если a<0 (ветви параболы направлены вниз), то неравенство f(x)<0 выполняется либо на всей числовой прямой (при D<0), либо на двух бесконечных лучах (при $D\geq 0$), а по условию задачи неравенство должно выполняться на ограниченном интервале (0;1). Таким образом, при a<0 задача не имеет решений.

Пусть a>0, x_1 , x_2 — корни уравнения $ax^2-x+1-a=0$. Из условия задачи следует, что множество решений неравенства $ax^2-x+1-a<0$ — множество $\left(x_1;\,x_2\right)$ содержится в интервале $\left(0;1\right)$. Графическое изображение параболы в этом случае будет следующим:





Из теорем 7, 8 получаем условия:

$$\begin{cases} a > 0 \\ D = 1 - 4(1 - a) \cdot a = 4a^2 - 4a + 1 > 0 \\ f(0) = 1 - a \ge 0 \\ f(1) = a - 1 + 1 - a \ge 0 \\ 0 < x_b = -\frac{b}{2a} = \frac{1}{2a} < 1 \end{cases} \Rightarrow \begin{cases} a > 0 \\ 2a \ne 1 \\ a \le 1 \\ a \in R \\ a > \frac{1}{2} \end{cases}$$

Пример 3.6 При каких значениях параметра a уравнение $4x^2 - 4x - 3a = 0$ имеет хотя бы одно решение по модулю меньше 1?

Решение. Условие задачи будет выполнено, если хотя бы один из корней принадлежит интервалу [-1; 1], т.е. в одном из следующих случаев:

- 1) только один корень уравнения принадлежит отрезку [-1; 1] $(-1 < x_1 < 1 < x_2)$ или $(x_1 < -1 < x_2 < 1)$;
- 2) оба корня уравнения принадлежат отрезку $\begin{bmatrix} -1;1 \end{bmatrix}$ $(-1 < x_1 < x_2 < 1);$

В первом случае получаем условие $f(-1) \cdot f(1) < 0$. Откуда следует, что $0 \le a \le \frac{8}{3}$.

Второй случай описывается системой неравенств: $D \ge 0, \ f(-1) \ge 0, \ f(1) \ge 0, \ -1 \le x_b \le 1.$

$$\begin{cases} D = 16 + 48 \, a \ge 0 \\ f(-1) = 8 - 3 \, a \ge 0 \\ f(1) = -3 \, a \ge 0 \end{cases} \Rightarrow -\frac{1}{3} \le a \le 0.$$

$$-1 < x_b = -\frac{b}{2a} = \frac{4}{8} < 1$$

Omsem: $-\frac{1}{3} \le a \le \frac{3}{8}$.

4. Решение задач повышенной сложности

Пример 4.1 Значение квадратного трехчлена в двух последовательных целых числах равны соответственно квадратам двух последовательных натуральных чисел. Докажите, что значения трехчлена во всех целых точках – точные квадраты.

Доказательство. Пусть $f(x) = x^2 + bx + c$, m, k – исходные натуральные числа, т.е., $m^2 + bm + c = k^2$, $(m+1)^2 + b(m+1) + c = (k+1)^2$. Вычтем первое уравнение из второго и получим b = 2(k-m). Тогда из первого уравнения получаем $c = k^2 - m^2 - bm = k^2 - m^2 - 2(k-m)m = (k-m)^2$. Пусть теперь p – произвольное целое число. В силу предыдущего,

$$f(p) = p^2 + bp + c = p^2 + 2(k-m)p + (k-m)^2 = (p-(k-m))^2$$

Пример 4.2 График линейной функции касается графика квадратичной функции y = f(x), а график квадрата этой линейной функции получается из графика функции f(x) сдвигом вниз на величину p. Найдите число p. (Докажите, что число p для всех таких функций единственное)

Доказательство. Пусть g(x)=kx+d,

$$f(x) = ax^2 + bx + c = a(x + \frac{b}{2a})^2 + c - \frac{b^2}{4a}$$
 — исходные функции. Тогда $g^2(x) = (kx + d)^2 = k^2(x + \frac{d}{k})^2$ — парабола со старшим коэффициентом k^2 и координатами вершины $(-\frac{d}{k}; 0)$. По условию задачи эта парабола получается из $f(x)$ сдвигом вниз на величину p : $f(x) - p = g^2(x)$. Учитывая свойства вертикального переноса параболы, получаем условия:

$$a = k^2, -\frac{b}{2a} = -\frac{d}{k}, c - \frac{b^2}{4a} - p = 0$$
. T.e., $k^2 = a, bk = 2ad, p = c - \frac{b^2}{4a}$.

Условие касания линейной функции и параболы равносильно условию: уравнение $ax^2 + bx + c = kx + d$ имеет единственное решение, т.е. $D = (b - k)^2 - 4a(c - d) = 0$.

Отсюда получаем, что $c=\frac{b^2+k^2}{4a}$. В силу предыдущего, $p=c-\frac{b^2}{4a}=\frac{b^2+k^2}{4a}-\frac{b^2}{4a}=\frac{k^2}{4a}=\frac{1}{4}$. Ответ: $p=\frac{1}{4}$.

Пример 4.3 При каких значениях параметра p уравнение $(8p-23)x^2+(11p-38)x+13-3p=0$ имеет ровно (2-p)(p-4) различных положительных решений.

Решение. Пусть (2-p)(p-4)=n — число решений исходного уравнения. Так как уравнение квадратное, то может иметь два корня, один или не иметь корней (иметь ноль корней).

Случай n=2 невозможен, так как уравнение (2-p)(p-4)=2 не имеет действительных решений (D<0).

Если n=1, то уравнение (2-p)(p-4)=1 имеет один корень p=3. Однако при p=3 исходное уравнение превращается в уравнение $x^2-5x+4=0$, которое имеет два корня x=1, x=4. Противоречие (мы рассматриваем случай n=1).

Если исходное уравнение не имеет корней, то уравнение $(2-p)(p-4)\!=\!0$ имеет два корня $p\!=\!2,p\!=\!4.$

При p=2 исходное уравнение $-7x^2-16x+7=0$ точно имеет один положительный корень и один отрицательный (f(o)>0). Следовательно, в этом случае рассматриваемое условие (ноль корней) не выполняется.

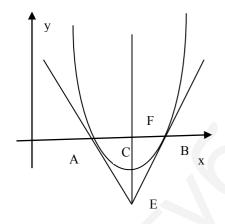
При p=4 исходное уравнение $9x^2+6x+1=0$ имеет только один отрицательный корень $x=-\frac{1}{3}$, т.е. имеет ноль положительных. *Ответ:* p=4.

Пример 4.4 Парабола $y = x^2 + px + q$ пересекает ось абсцисс в точках A, B. Известно, что угол между касательными к параболе, проведенным в точках A, B, равен 90° . Найдите площадь треугольника ABC, где C – вершина параболы.

Решение. Пусть x_1, x_2 – корни уравнения $x^2 + px + q = 0$, $x_2 - x_1 = \sqrt{D}$, $A(x_1;0)$ и $B(x_2;0)$ – точки пересечения параболы с осью OX, $C(\frac{-p}{2};\frac{-D}{4})$ – вершина параболы, E – точка пересечения касательных EA и EB.

Площадь треугольника АВС можно вычислить по формуле

$$S = \frac{1}{2} |AB| |EF| = \frac{1}{2} (x_2 - x_1) \cdot \frac{D}{4} = \frac{D\sqrt{D}}{8}.$$



Точки A,B симметричны относительно оси параболы $x=\frac{-p}{2}$, точка E также лежит на оси симметрии. Следовательно, ABC – равнобедренный прямоугольный треугольник, в котором $\angle ABE = \angle BAE = 45^\circ$. Уравнение касательной BE, с угловым том 1 (угол 45°) проходящей через точку $(x_2;0)$ имеет вид $Y_2 = x - x_2$.

Условие касания прямой $Y=x-x_2$ и параболы $y=x^2+px+q$ можно сформулировать следующим образом: уравнение $x^2+px+q=x-x_2$ имеет единственное решение (т.е. дискриминант равен нулю):

$$0 = D = (p-1)^2 - 4(q+x_2) = p^2 - 2p + 1 - 4q + x_2 =$$

$$p^2 - 2p + 1 - 4q - 4 \cdot \frac{-p + \sqrt{D}}{2} = p^2 - 4q + 1 - 2\sqrt{D} = (\sqrt{D} - 1)^2.$$

Таким образом, $\sqrt{D} = 1$, $S = \frac{D\sqrt{D}}{8} = \frac{1}{8}$. *Omeem:* $S = \frac{1}{8}$.

Пример 4.5 Найдите все значения параметра a, при которых наименьшее значение функции $f(x)=2ax+\left|x^2-8x+7\right|$ меньше 1.

Решение. "Раскроем модуль": Если $x^2 - 8x + 7 \ge 0$, то $f(x) = x^2 + 2(a-4)x + 7$ - парабола с ветвями, направленными вверх и координатами вершины $x_b = 4 - a$. А если $x^2 - 8x + 7 < 0$, то график $f(x) = -x^2 + 2(a+4)x + 7$ - парабола с ветвями, направленными вниз. Возможны два варианта расположения вершины первой параболы:

- 1) $4-a\in[1;7]$, т.е. $-3\leq a\leq 3$, тогда наименьшее значение будет достигаться в той точке, которая находится дальше от вершины параболы. При $0\leq a\leq 3$ наименьшее значение функции будет достигаться в точке x=1 и $f(1)=2a<1\Rightarrow 0\leq a<\frac{1}{2}$. При $-3\leq a\leq 0$ наименьшее значение функции будет достигаться в точке x=7 и $f(7)=14a<1\Rightarrow -3\leq a\leq 0$. В итоге в первом случае получаем условие: $-3\leq a<\frac{1}{2}$.
- 2) $4-a\not\in [1;7]$, т.е. a<-3 или a>3. Тогда наименьшее значение будет достигаться в вершине параболы $x_b=4-a$ и $f(4-a)=(4-a)^2+2(a-4)(4-a)+7=8a-9-a^2<1$. Отсюда получаем условие $a^2-8a+10>0\Rightarrow a<4-\sqrt{6}$ или $a>4+\sqrt{6}$. Т.е. во втором случае получим условие a<-3 или $a>4+\sqrt{6}$. Объединим оба варианта. *Ответ:* $a<\frac{1}{2}$; $a>4+\sqrt{6}$.

Пример 4.6 Найдите все квадратные трехчлены p(x) с целыми коэффициентами, удовлетворяющие неравенству $x^2 + x + 1 \le p(x) \le 2x^2 + 2x + 2$ для любых значений x.

Решение. Пусть $p(x) = ax^2 + bx + c$. Из свойств параболы следует, что если $p(x) \ge x^2 + x + 1$, то $(a-1)x^2 + (b-1)x + c - 1 \ge 0$ для всех x и должно выполняться

условие $a-1\ge 0$. Аналогично, если $p(x)\le 2x^2+2x+2$, то $(2-a)x^2+(2-b)x+2-c\ge 0$ для всех x и $2-a\ge 0$. Таким образом, справедливы неравенства $1\le a\le 2$. Если a- целое, то a=1 либо a=2.

Если a=1, то неравенство $(b-1)x+c-1\geq 0$ выполняется для любого x, а это возможно только при условии $b=1,c\geq 1$.

Если a=2, то неравенство $(2-b)x+2-c\geq 0$ выполняется для любого x, а это возможно только при условии $b=2,2\geq c$.

Таким образом, исходным условиям удовлетворяют следующие варианты p(x): $x^2 + x + 1$, $x^2 + x + 2$, $2x^2 + 2x + 1$, $2x^2 + 2x + 2$.

Очевидно, что первый и четвертый варианты удовлетворяют условию задачи. Если $p(x)=x^2+x+2$, то неравенства $x^2+x+1 \le x^2+x+2 \le 2x^2+2x+2$ должны выполняются для всех x. Тогда неравенство $0 \le x^2+x$ должно выполняться для любого x, а это неверно. Если $p(x)=2x^2+2x+1$, то неравенства $x^2+x+1 \le 2x^2+2x+1 \le 2x^2+2x+2$ должны выполняются для всех x. Тогда неравенство $0 \le x^2+x$ должно выполняться для любого x, а это опять неверно.

Ответ: $p(x) = x^2 + x + 1$ или $p(x) = 2x^2 + 2x + 2$.

Пример 4.7 Квадратный трехчлен $x^2 + ax + b$ имеет целые корни по модулю больше 2. Докажите, что число a + b + 1 — составное.

Решение. Пусть $f(x)=x^2+ax+b$ имеет целые корни. Тогда f(x)=(x-p)(x-q), где p,q- целые числа, по модулю больше 2. Что за число 1+a+b? Легко заметить, что 1+a+b- значение трехчлена при x=1. Тогда 1+a+b=f(1)=(1-p)(1-q), причем каждое из чисел 1-p и 1-q целое число, не равное единицы. Следовательно, 1+a+b раскладывается в произведение целых чисел, не равных единице, т.е. является составным.

Пример 4.8 Рассматриваются многочлены $x^2 + px + q$ с целыми коэффициентами, при этом p + q = 30. Сколько таких многочленов имеют целые корни?

Решение. Так как многочлен имеет целые корни, то f(x)=(x-n)(x-m), где n,m- целые числа. Тогда из разложения на линейные множители и условия задачи получаем, что простое число 31 раскладывается в произведение целых чисел: $f(1)=(1-x_1)(1-x_2)=1+p+q=31$. Отсюда, например, $x_1-1=1,x_2-1=31 \Rightarrow x_1=2,x_2=32$, а по теореме Виета $p=-(x_1+x_2)=-34, q=x_1\cdot x_2=64$, т.е. условию задачи отвечает только один многочлен. Ответ: $x^2-34x+64$.

Пример 4.9 Оба корня многочлена $f(x)=x^2+(3a+10)x+5b-14$ и значение f(1) являются простыми числами. Найдите корни многочлена и значения параметров a и b.

Решение. По условию задачи f(x)=(x-p)(x-q), где p,q-1 простые числа. Известно, что $f(1)=(1-x_1)(1-x_2),x_1,x_2-1$ простых числа. Если $x_1-1=1$, то x_2 и x_2-1 одновременно являются простыми числами, что возможно только в случае $x_2-1=2,x_2=3$. Тогда $f(x)=(x-2)(x-3)=x^2-5x+6$. Следовательно, 3a+10=-5,5b-14=6 и a=-5,b=4.

6. Задачи для самостоятельного решения

- **1.** Вычислите $\frac{1}{x_1} + \frac{1}{x_2}$, где x_1, x_2 корни уравнения $3x^2 2x 6 = 0$
- **2.** Вычислите $x_1^3 + x_2^3$, где x_1 x_2 корни уравнения $x^2 + 2x 9 = 0$.
- **3**. Известно, что $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{2}$, где x_1, x_2 корни уравнения $x^2 + x + a = 0$. Найдите a.

- **4.** При каких значениях a функция $f(x) = \frac{1}{x^2 + 2ax 4a}$ определена при всех значениях x?
- **5.** При каких a уравнение $\frac{x^2 ax + 1}{x + 5} = 0$ имеет единственное решение?
- **6.** При каких k условие $\frac{x^2 + kx 2}{x^2 x + 1} < 2$ выполняется для всех x?
- **7.** Для всякого a определите число решений уравнения $|x^2 2x 3| = a$.
- **8.** При каком значении параметра p уравнение имеет два раз личных положительных корня $(1-p)x^2 + 2px (p+2) = 0$?
- **9.** Найдите все значения m, при которых неравенство $x^2 + mx + m^2 + 6m < 0$ выполняется для всех $1 \le x \le 2$?
- **10.** При каком значении параметра a любое значение x, удовлетворяющее неравенству $ax^2 + (1-a^2)x a > 0$, по модулю меньше $ax^2 + ax^2 + a$
- **11.** При каком значении параметра a только один корень уравнения $x^2 + 2(a-4)x + 16-5x = 0$ удовлетворяет условию x > 3?
- **12.** При каких значениях a из неравенства $0 \le x \le 1$ следует неравенство $(a^2 + a 2)x^2 (a + 5)x 2 \le 0$?
 - **13.** При каких значениях p корни уравнения $5x^2-4(p+3)x+4-p^2=0$ противоположны по знаку?
- **14.** При каких значениях a ровно один корень уравнения $x^2 + 2ax + 3a 2 = 0$ удовлетворяет условию x < -1?
- **15.** Найдите области определения и области значений функций $y = \sqrt{x^2 2x 3}$, $y = \sqrt{2 x x^2}$.
- **16.** Найдите корни квадратного трехчлена, если известно, что сумма его коэффициентов равна 2, а (4; -2,5) координаты его вершины.

- **17.** Найдите все значения a, при которых функции $y = x^2 ax a$ и $y = (1+a)x^2 + 2x$ имеют не более одной общей точки.
- **18.** Найдите все значения a, при которых графики функций $y=(a+5)x^2-7$, y=(3a+15)x-4 не имеют общих точек.
- **19.** Найдите все значения параметра a, при которых $\min_{[0:2]} (4x^2 4ax + a^2 2a + 2) = 3$.
- **20.** Найдите все значения параметра a, при которых $\max_{[0;1]} (-x^2 + 2ax a^2 2a 3) = -2.$
- **21.** Найдите все значения параметра a, при которых значения квадратного трехчлена $f(x) = x^2 2ax + a^2 + a 2$ положительны при любом $x \in [-1;1]$
- **22.** Найдите все значения параметра a, при которых уравнение $x^2 4ax + 2a + 2 = 0$ имеет хотя бы одно положительное решение.
- **23.** При каких значениях параметра a множество решений системы $\begin{cases} x^2 + (a+4)x + 4a \le y \\ 3x + y (2a+4) & \le 0 \end{cases}$ содержит отрезок [-2;-1] оси OX?
- **24.** При каких значениях параметра k один из корней уравнения $x^2 (2k+1)x + k^2 + 2 = 0$ вдвое больше другого?
- **25.** При каком целом значении параметра a сумма квадратов корней уравнения $x^2 + ax + a 2 = 0$ будет наименьшей?
- **26.** При каких значениях параметра a неравенство $\frac{2-ax-x^2}{1-x+x^2} \le 3$

справедливо для всех x?

- **27.** При каких значениях параметра m квадратный трехчлен $f(x) = (6m-5) x^2 5(m-1)x + 2m-6$ есть полный квадрат?
- **28.** При каких значениях параметра p оба корня уравнения $x^2 + px + p^2 1 = 0$ принадлежат интервалу [0;4]?
- **29.** При каких значениях параметра a только один корень уравнения $x^2 4x + a = 0$ принадлежат интервалу [0;1]?

- **30.** Найдите все значения параметра a, при которых уравнение $ax^2 + (3+4a)x + 2a^2 + 4a + 3 = 0$ имеет только целые корни.
- **31.** Квадратное уравнение $x^2 6px + q = 0$ имеет два различных корня x_1, x_2 . Числа p, x_1, x_2, q последовательные члены геомет рической прогрессии. Найдите x_1, x_2 .
- **32.** График параболы проходит через точки (1;0),(-5;0),(0;10). Найдите значение параболы при x=2.
- **33.** При каких значениях параметра a среди решений неравенства $x^2-(2a-1)x-2a<0$ содержится только три целых положительных числа?
- **34.** При каких значениях параметра a неравенство $\frac{x+3a-5}{x+a} > 0$ справедливо для всех x таких, что $1 \le x \le 4$?
- **35.** Найдите все значения параметра a, при которых уравнение $ax^2 + (2a-5)x + a 6 = 0$ имеет на отрезке [0;2] единственный корень.
- **36.** Пусть $f(x) = x^2 + (3a+10)x + 5b-14$. Оба корня уравнения f(x) = 0 и значение f(1) являются простыми числами. Найдите значения параметров a, b и корни уравнения.
- **37.** Найдите целые значения параметров a и b, при которых корни уравнения $x^2 + (2a+9)x + 3b + 5 = 0$ являются различными целыми числами, а коэффициенты 2a+9 и 3b+5- простые числа.
- **38.** Найдите все значения параметра a, при которых уравнение $x^2 (a+1)x + a 1 = 0$ имеет два корня, разность которых равна их произведению.
- **39.** Найдите все значения параметра a, при которых уравнение $3x^2 2a(x-1) 2 = 0$ имеет два корня, сумма квадратов которых равна их произведению.
- **40.** Найдите все значения параметра a, при которых график функции $y = (a-1)x^2 + 2ax + 3a 2$ касается оси абсцисс.

- **41.** Найдите все значения a, при которых уравнение $\frac{x^2+3(2-a)x+2a^2-7a+5}{x^2-x-6}=0$ имеет единственное решение.
- **42.** Найдите все значения a, при которых неравенство $\frac{x^2-8\,x+20}{ax^2+2(a+1)x+9a+4}<0$ выполняется при всех значениях x.
- **43.** Найдите все значения параметра a, при которых из неравенства $x \ge 1$ следует неравенство $2x^2 + (a-1)x (a^2 11a + 28) \ge 0$
 - **44.** Найдите все значения параметра a, при которых из неравенства $x^2 (3a+1) x + a > 0$ следует неравенство x > 1.
 - **45.** Найдите все значения параметра a, при которых все корни уравнения $x^2 2ax + a^2 a = 0$ больше -2 и меньше 6.
 - **46.** Найдите все значения параметра a, при которых один из корней уравнения $x^2 + 2(a-2)x + 9 = 0$ принадлежит интервалу (1; 2), а другой нет.
 - **47.** Ветви параболы $y = 4ax^2 + 12ax + 9a 1$ направлены вниз. Докажите, что парабола не пересекает ось абсцисс.
 - **48.** Квадратный трехчлен $f(x) = x^2 + bx + c$ имеет один корень. Кроме того, уравнение f(2x-3) + f(3x+1) = 0 имеет ровно один корень. Найдите корень уравнения f(x) = 0.
 - **49.** Квадратный трехчлен f(x) имеет один корень. Кроме того, уравнение f(2x-3)+f(3x+1)=0 имеет ровно один корень. Найдите коэффициенты b и c.
 - **50.** Ветви параболы $y = 9ax^2 + 12ax + 4a 1$ направлены вверх. Докажите, что парабола пересекает ось абсцисс в двух точках.

Ответы к задачам 1-50:

1.
$$-\frac{1}{3}$$
 \ 2. -62 \ 3. -2 \ 4. $(-4;0)$ \ 5. $\pm 2, \frac{26}{5}$ \ 6. $(-2;6)$ \ 7. 2 при

$$a>4$$
, 3 при $a=4$,4 при $0< a<4$,2 при $a=0$, нет при $a<0$ \

8.
$$p < -2$$
, $p \in (1;2) \setminus 9$. $\frac{-7+3\sqrt{5}}{2} < m < -4+2\sqrt{3} \setminus 10$. $(-2;-0.5) \setminus (-2;-0.5)$

11.
$$a \le -1 \setminus 12$$
. $(-3,3) \setminus 13$. $|p| > 2 \setminus 14$. $a \le 1 \setminus 14$

15.
$$[-1;3],[0;\infty);[-2;1],[0;1.5] \setminus 16.$$
 $4 \pm \sqrt{5} \setminus 17.$ $a \le -\frac{2}{3}, a \ge 2 \setminus 16.$

18.
$$\frac{-19}{3} < a < -5 \setminus 19$$
. $a = 1 - \sqrt{2}$, $a = 5 + \sqrt{10} \setminus 20$. $a = -1 \setminus 19$

21.
$$a < \frac{-3 - \sqrt{13}}{2}, \frac{1 + \sqrt{5}}{2} \le a \le 2 \setminus 22. \ a < -1, a \ge 0 \setminus 23. \ -3.5 \le a \le 1 \setminus 22.$$

24.
$$k = 4 \setminus 25$$
. $a = 1 \setminus 26$. $-1 < a < 7 \setminus 27$. $m = 5 \setminus 28$. $-\frac{4}{3} \le p \le -1 \setminus 27$

29.
$$0 < a < 3 \setminus 30$$
. $a = 0, a = -\frac{1}{2}, a = \frac{3}{2} \setminus$

31.
$$x_1 = -3, x_2 = 9, x_1 = 2, x_2 = 4 \setminus 32.-14 \setminus 33. \ 1 < a \le \frac{3}{2}$$

34.
$$a \in (-\infty; -4) \cup (\frac{3}{2}; +\infty) \setminus 35. \frac{16}{9} \le a < 6 \setminus 36. \ x_1 = 2; x_2 = 3; a = -5; b = 4 \setminus 36.$$

37.
$$a = -3$$
; $b = -1.38$. $a = 2 \setminus 39$. $\emptyset \setminus 40$. $a = 0,5 \setminus 41$. $a = 1, a = 1,5 \setminus 42$. $a < -0,5 \setminus 43$. $[3;9] \setminus 44$. $\emptyset \setminus 45$. $[0;4) \setminus 46$. $(1,2;2] \setminus 48$. $x = -11 \setminus 49$. $b = 22$, $c = 121$

7. Задачи повышенной сложности1

1. Даны числа a,b,c. Известно, что для любого x выполняются неравенства $ax^2 + bx + c \ge bx^2 + cx + a \ge cx^2 + ax + b$. Докажите, что a = b = c.

Задачи из сборников олимпиадных задач [1, 13], вариантов вступительных экзаменов в вузы, вариантов ЕГЭ, других источников, авторские задачи.

- **2.** Пусть f(x), g(x), h(x) три квадратных трехчлена с положительными коэффициентами. Известно, что каждый из них имеет хотя бы один общий корень с суммой других. Докажите, что многочлены f(x), g(x), h(x) имеют общий корень.
- **3.** $ax^2 + 2bx + c$, $bx^2 + 2cx + a$, $cx^2 + 2ax + b$ квадратные трехчлены с положительными коэффициентами, причем любые два из них имеют общий корень. Докажите, что a = b = c.
- **4.** На параболе $y=x^2$ выбраны четыре точки A,B,C,D так, что прямые AB и CD пересекаются на оси ординат. Найдите абсциссу точки D, если абсциссы точек A,B,C равны соответственно a,b,c.
- **5.** Найдите все целые значения a, при которых уравнение $x^2 + ax + a = 0$ имеет целые корни.
- **6.** Из квадратного трехчлена $ax^2 + bx + c$ получили три квадратных трехчлена: $(a+1)x^2 + bx + c$, $ax^2 + (b+1)x + c$, $ax^2 + bx + c + 1$. Оказалось, что любые два из них имеют общий корень. Докажите, что сумма коэффициентов квадратного трехчлена целое число.
- **7.** Решите уравнение f(f(f(f(x))))=0, где $f(x)=x^2+12x+30$.
- **8.** Пусть уравнение $x^2 + px + q = 0$ имеет корни. Сколько корней имеет уравнение $f(x) + f(x + \sqrt{D}) = 0$?
- **9.** При каких значениях параметра a сумма корней уравнения $ax^2 + x 8a + 4 = 0$ меньше 1, а произведение больше 3?
- **10.** Произведение четырех корней уравнений $x^2 + 2bx + c = 0$, $x^2 + 2cx + b = 0$ равно единице. Найдите b, c.
- **11.** Парабола $y=ax^2+bx+c$ (a>0) пересекает ось абсцисс в точках A,B,C вершина параболы. Известно, что угол между касательными к параболе, проведенным в точках A,B, равен 90°. Найдите a, если площадь треугольника равна 32.
- **12.** Касательная к графику $y=-x^2+4x-2$ пересекает координатные оси в точках A,B, причем 2OA=OB. Найдите длину отрезка AB.

- **13.** Числа x_1, x_2, x_3, x_4 последовательные члены арифметической прогрессии. Известно, что x_1, x_2 корни уравнения $x^2 3x + a = 0$, а x_3, x_4 корни уравнения $x^2 12x + b = 0$. Найдите a, b.
- **14.** Найдите все значения параметра a, при которых множество решений неравенства $(6a+3)x-2x^2 \ge 3a+1$ содержит единственное целое число.
- **15**. Найдите все значения параметра a, для которых при каждом x из промежутка (-3;-1] выражение ax^2 не равно значению выражения $x^4 8x^2 2$.
- **16**. Найдите все значения параметра a, для которых при каждом x из промежутка [-6;-1] выражение $x^2-5|x|$ не равно значению выражения a|x|+4.
- **17.** Квадратный трехчлен $f(x)=x^2+px+q$ имеет два различных целых корня. Один из корней и значение f(11) являются простыми числами. Найдите корни многочлена и значения параметров p и q.

Список дополнительной литературы

- 1. Агаханов Н., Подлипский О. Математические олимпиады Московской области, –М.: Физматкнига, 2006
- 2. Агаханов Н.К. и др. Математика. Всероссийские олимпиады. Вып 1. М.: Просвещение, 2008
- 3. Белоносов В.С., Фокин, М.В. Задачи вступительных экзаменов, Новосибирск: Сиб. Унив. Из-во, 2003
- 4. Дорофеев Г.В., Потапов М.К., Розов Н.Х. Пособие по математи ке для поступающих в вузы, –М.: Дрофа, 2002
- 5. Григорян А.А., Шикин Е.В, Шикина Г.Е. Математика. Пособие для абитуриентов, –М.: Аспект Пресс, 2002
- 6. Потапов М.К., Олехник С.Н., Нестеренко Ю.В., Конкурсные задачи по математике, –М.: Физматлит, 2001.
- 7. Родионов Е.М. Математика. Решение задач с параметрами, М.: Из-во НЦ ЭНАС, 2006
- 8. Ткачук В.В. Математика абитуриенту, -М.: МЦНМО, 2008
- 9. Шабунин М. Математика для поступающих в вузы, –М.: Бином. Лаборатория знаний, 2004
- 10. Черкасов О.Ю, Якушев А.Г. Математика. Справочник для старшеклассников и поступающих в вузы, М.: Аст-Пресс Школа, 2004
- 11. Федоров Р.М. и др. Московские математические олимпиады 1993–2005г. М.: МЦНМО, 2006
- 12. Чуваков В.П. Квадратичная функция, Н-ск: Редакционно-издательский центр НГУ, 2008
- 13. Задачи Санкт-Петербургской олимпиады школьников по математике 2011(2012) года, М.: МЦНМО, 2012 (2013)

Содержание

Введение	3
Общие сведения	3
Решение квадратных уравнений	6
Теорема Виета	9
Расположение корней квадратного уравнения	15
Решение задач повышенной сложности	201
Задачи для самостоятельного решения	246
Задачи повышенной сложности	31
Список дополнительной литературы	34
Содержание	35

Учебное издание

Квадратичная функция

Составитель

Чуваков Валерий Петрович (<u>chv@uriit.ru</u>)

Бюджетное общеобразовательное учреждение Ханты-Мансийского автономного округа-Югры «Югорский физико-математический лицей-интернат»,
г. Ханты-Мансийск, ул. Мира, 151,

r. Ханты–Мансийск, ул. Мира, 151, сайт лицея: ugrafmsh.ru